Patents by Inventor Ashok Veeraraghavan

Ashok Veeraraghavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230410341
    Abstract: A method for a passive single-viewpoint 3D imaging system comprises capturing an image from a camera having one or more phase masks. The method further includes using a reconstruction algorithm, for estimation of a 3D or depth image.
    Type: Application
    Filed: April 26, 2023
    Publication date: December 21, 2023
    Applicants: William Marsh Rice University, Carnegie Mellon University
    Inventors: Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin C. Sankaranarayanan, Ashok Veeraraghavan
  • Publication number: 20230233085
    Abstract: A system for imaging a target embedded in a scattering media includes: one or more light sources that are pulsed lights at one or more wavelengths in a range of visible to near-infrared; a detector, including a photodetector array with a time-gating function, configured to collect a scattered light after a gate start time; and a processor configured to determine an image of the target based on the scattered light.
    Type: Application
    Filed: January 27, 2023
    Publication date: July 27, 2023
    Applicant: William Marsh Rice University
    Inventors: Yongyi Zhao, Ankit Raghuram, Ashok Veeraraghavan, Jacob Robinson
  • Patent number: 11676294
    Abstract: A method for a passive single-viewpoint 3D imaging system comprises capturing an image from a camera having one or more phase masks. The method further includes using a reconstruction algorithm, for estimation of a 3D or depth image.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 13, 2023
    Assignees: William Marsh Rice University, Carnegie Mellon University
    Inventors: Yicheng Wu, Vivek Boominathan, Huaijin Chen, Aswin C. Sankaranarayanan, Ashok Veeraraghavan
  • Patent number: 11259710
    Abstract: A remote photoplethysmography (RPPG) system includes an input interface to receive a sequence of measurements of intensities of different regions of a skin of a person indicative of vital signs of the person; a solver to solve an optimization problem to determine frequency coefficients of photoplethysmographic waveforms corresponding to the measured intensities at the different regions, wherein the solver determines the frequency coefficients to reduce a distance between intensities of the skin reconstructed from the frequency coefficients and the corresponding measured intensities of the skin while enforcing joint sparsity on the frequency coefficients; and an estimator to estimate the vital signs of the person from the determined frequency coefficients of photoplethysmographic waveforms.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 1, 2022
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Hassan Mansour, Tim Marks, Ewa Nowara, Yudai Nakamura, Ashok Veeraraghavan
  • Patent number: 11178349
    Abstract: A lens-free imaging system for generating an image of a scene includes an electromagnetic (EM) radiation sensor; a mask disposed between the EM radiation sensor and the scene; an image processor that obtains signals from the EM radiation sensor while the EM radiation sensor is exposed to the scene; and estimates the image of the scene based on, at least in part, the signals and a transfer function between the scene and the EM radiation sensor.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 16, 2021
    Assignee: William Marsh Rice University
    Inventors: Aswin Sankaranarayanan, Ashok Veeraraghavan, Lisa A. Hendricks, Richard Baraniuk, Ali Ayremlou, M. Salman Asif
  • Patent number: 10970590
    Abstract: Methods and apparatus are presented herein for detecting an oilfield equipment unit of an oilfield wellsite from a visible image, overlaying the detected oilfield equipment unit of the visible image on a corresponding portion of a thermal image, and generating an alert when a temperature indicated by the corresponding portion of the thermal image is outside of an operational temperature range of the detected oilfield equipment unit. The methods and apparatus presented herein facilitate the monitoring of the health of oilfield equipment units that would otherwise be monitored by numerous sensors disposed about the oilfield wellsite.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: April 6, 2021
    Assignee: Schlumberger Technology Corporation
    Inventors: Rajesh Luharuka, Ashok Veeraraghavan
  • Publication number: 20200351454
    Abstract: A system for a wavefront imaging sensor with high resolution (WISH) comprises a spatial light modulator (SLM), a plurality of image sensors and a processor. The system further includes the SLM and a computational post-processing algorithm for recovering an incident wavefront with a high spatial resolution and a fine phase estimation. In addition, the image sensors work both in a visible electromagnetic (EM) spectrum and outside the visible EM spectrum.
    Type: Application
    Filed: April 30, 2020
    Publication date: November 5, 2020
    Applicant: William Marsh Rice University
    Inventors: Yicheng Wu, Manoj Kumar Sharma, Ashok Veeraraghavan
  • Publication number: 20200349729
    Abstract: A method for a passive single-viewpoint 3D imaging system comprises capturing an image from a camera having one or more phase masks. The method further includes using a reconstruction algorithm, for estimation of a 3D or depth image.
    Type: Application
    Filed: May 1, 2020
    Publication date: November 5, 2020
    Applicants: William Marsh Rice University, Carnegie Mellon University
    Inventors: Yicheng Wu, Vivek Boominathan, Hauijin Chen, Aswin C. Sankaranarayanan, Ashok Veeraraghavan
  • Patent number: 10753869
    Abstract: In one aspect, embodiments disclosed herein relate to a lens-free imaging system. The lens-free imaging system includes: an image sampler, a radiation source, a mask disposed between the image sampler and a scene, and an image sampler processor. The image sampler processor obtains signals from the image sampler that is exposed, through the mask, to radiation scattered by the scene which is illuminated by the radiation source. The image sampler processor then estimates an image of the scene based on the signals from the image sampler, processed using a transfer function that relates the signals and the scene.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 25, 2020
    Assignee: William Marsh Rice University
    Inventors: Ashok Veeraraghavan, Richard Baraniuk, Jacob Robinson, Vivek Boominathan, Jesse Adams, Benjamin Avants
  • Patent number: 10694123
    Abstract: A method for imaging objects includes illuminating an object with a light source of an imaging device, and receiving an illumination field reflected by the object. An aperture field that intercepts a pupil of the imaging device is an optical propagation of the illumination field at an aperture plane. The method includes receiving a portion of the aperture field onto a camera sensor, and receiving a sensor field of optical intensity. The method also includes iteratively centering the camera focus along the Fourier plane at different locations to produce a series of sensor fields and stitching together the sensor fields in the Fourier domain to generate an image. The method also includes determining a plurality of phase information for each sensor field in the series of sensor fields, applying the plurality of phase information to the image, receiving a plurality of illumination fields reflected by the object, and denoising the intensity of plurality of illumination fields using Fourier ptychography.
    Type: Grant
    Filed: July 14, 2018
    Date of Patent: June 23, 2020
    Assignees: Northwestern University, William Marsh Rice University
    Inventors: Oliver Strider Cossairt, Jason Holloway, Ashok Veeraraghavan, Manoj Kumar Sharma, Yicheng Wu
  • Publication number: 20200150266
    Abstract: A method for imaging objects includes illuminating an object with a light source of an imaging device, and receiving an illumination field reflected by the object. An aperture field that intercepts a pupil of the imaging device is an optical propagation of the illumination field at an aperture plane. The method includes receiving a portion of the aperture field onto a camera sensor, and receiving a sensor field of optical intensity. The method also includes iteratively centering the camera focus along the Fourier plane at different locations to produce a series of sensor fields and stitching together the sensor fields in the Fourier domain to generate an image. The method also includes determining a plurality of phase information for each sensor field in the series of sensor fields, applying the plurality of phase information to the image, receiving a plurality of illumination fields reflected by the object, and denoising the intensity of plurality of illumination fields using Fourier ptychography.
    Type: Application
    Filed: July 14, 2018
    Publication date: May 14, 2020
    Inventors: Oliver Cossairt, Jason Holloway, Ashok Veeraraghavan, Manoj Kumar Sharma, Yicheng Wu
  • Publication number: 20190350471
    Abstract: A remote photoplethysmography (RPPG) system includes an input interface to receive a sequence of measurements of intensities of different regions of a skin of a person indicative of vital signs of the person; a solver to solve an optimization problem to determine frequency coefficients of photoplethysmographic waveforms corresponding to the measured intensities at the different regions, wherein the solver determines the frequency coefficients to reduce a distance between intensities of the skin reconstructed from the frequency coefficients and the corresponding measured intensities of the skin while enforcing joint sparsity on the frequency coefficients; and an estimator to estimate the vital signs of the person from the determined frequency coefficients of photoplethysmographic waveforms.
    Type: Application
    Filed: October 23, 2018
    Publication date: November 21, 2019
    Inventors: Tim Marks, Hassan Mansour, Ewa Nowara, Yudai Nakamura, Ashok Veeraraghavan
  • Publication number: 20190175029
    Abstract: In one aspect, embodiments disclosed herein relate to multi-sensor imaging systems for measuring a pulsatile blood perfusion map and methods of use, including: one or more high accuracy blood flow sensors that generate a reference blood volume waveform; one or more low accuracy blood flow sensors that generate a second blood volume waveform; and a controller connected to the high accuracy blood flow sensor and the one or more low accuracy blood flow sensors by at least one operable connection, wherein the controller is configured to generate the pulsatile blood perfusion map by analyzing the reference blood volume waveform and the second blood volume waveform.
    Type: Application
    Filed: May 12, 2017
    Publication date: June 13, 2019
    Inventors: Mayank KUMAR, Ashok VEERARAGHAVAN, Ashutosh SABHARWAL
  • Publication number: 20190178796
    Abstract: In one aspect, embodiments disclosed herein relate to a lens-free imaging system. The lens-free imaging system includes: an image sampler, a radiation source, a mask disposed between the image sampler and a scene, and an image sampler processor. The image sampler processor obtains signals from the image sampler that is exposed, through the mask, to radiation scattered by the scene which is illuminated by the radiation source. The image sampler processor then estimates an image of the scene based on the signals from the image sampler, processed using a transfer function that relates the signals and the scene.
    Type: Application
    Filed: July 28, 2017
    Publication date: June 13, 2019
    Applicant: William Marsh Rice University
    Inventors: Ashok Veeraraghavan, Richard Baraniuk, Jacob Robinson, Vivek Boominathan, Jesse Adams, Benjamin Avants
  • Patent number: 10230874
    Abstract: An imaging device includes: a control unit configured to control an output of an irradiation signal including an irradiation code used for control of a pattern of emission of irradiation light and an output of a reference signal including a reference code indicating a pattern used for detection of a correlation with reception light including reflection light of the irradiation light; and an imaging element configured to output a pixel signal indicating a correlation between the reception light and the reference signal, wherein one of the irradiation code and the reference code is a code in which weighted adding of a plurality of unit codes, in which a phase of a basic code having an impulse cross-correlation with the other code is shifted for a different shift amount, is performed.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: March 12, 2019
    Assignee: Sony Corporation
    Inventors: Ryuichi Tadano, Adithya Pediredla, Ashok Veeraraghavan
  • Publication number: 20180181830
    Abstract: Methods and apparatus for detecting an equipment unit of a wellsite from a visible image, overlaying the detected equipment unit of the visible image on a corresponding portion of a thermal image, and generating an alert when a temperature indicated by the corresponding portion of the thermal image is outside of an operational temperature range of the detected equipment unit.
    Type: Application
    Filed: June 6, 2016
    Publication date: June 28, 2018
    Inventors: Rajesh LUHARUKA, Ashok VEERARAGHAVAN
  • Patent number: 9936880
    Abstract: A system for estimating a photoplethysmogram waveform of a target includes an image processor configured to obtain images of the target and a waveform analyzer. The waveform analyzer is configured to determine a weight of a portion of the target. The weight is based on a time variation of a light reflectivity of the portion of the target. The time variation of the light reflectivity of the target is based on the images. The waveform analyzer is further configured to estimate a PPG waveform of the target based on the weight of the portion and the time variation of the light reflectivity of the portion.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: April 10, 2018
    Assignee: William Marsh Rice University
    Inventors: Mayank Kumar, Ashok Veeraraghavan, Ashutosh Sabharwal
  • Publication number: 20180027201
    Abstract: A lens-free imaging system for generating an image of a scene includes an electromagnetic (EM) radiation sensor; a mask disposed between the EM radiation sensor and the scene; an image processor that obtains signals from the EM radiation sensor while the EM radiation sensor is exposed to the scene; and estimates the image of the scene based on, at least in part, the signals and a transfer function between the scene and the EM radiation sensor.
    Type: Application
    Filed: January 29, 2016
    Publication date: January 25, 2018
    Applicant: William Marsh Rice University
    Inventors: Aswin Sankaranarayanan, Ashok Veeraraghavan, Lisa A. Hendricks, Richard Baraniuk, Ali Ayremlou, M. Salman Asif
  • Publication number: 20160316112
    Abstract: An image or a range image in a range at an arbitrary distance is acquired. An imaging device includes: a control unit configured to control an output of an irradiation signal including an irradiation code used for control of a pattern of emission of irradiation light and an output of a reference signal including a reference code indicating a pattern used for detection of a correlation with reception light including reflection light of the irradiation light; and an imaging element configured to output a pixel signal indicating a correlation between the reception light and the reference signal, wherein one of the irradiation code and the reference code is a code in which weighted adding of a plurality of unit codes, in which a phase of a basic code having an impulse cross-correlation with the other code is shifted for a different shift amount, is performed. The present technology can be applied, for example, to a camera that photographs a range image.
    Type: Application
    Filed: April 20, 2016
    Publication date: October 27, 2016
    Applicants: Sony Corporation, William Marsh Rice University
    Inventors: Ryuichi Tadano, Adithya Pediredla, Ashok Veeraraghavan
  • Patent number: 9420201
    Abstract: Provided is an image processing apparatus including an image generation unit that, from photographic images that are captured using multiple photographic parameters, generates an image of which values of the multiple photographic parameters are different from values of the photographic image.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: August 16, 2016
    Assignees: SONY CORPORATION, WILLIAM MARSH RICE UNIVERSITY
    Inventors: Atsushi Ito, Ashok Veeraraghavan, Kaushik Mitra, Salil Tambe