Patents by Inventor Atif Noori

Atif Noori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140120723
    Abstract: Provided are atomic layer deposition methods to deposit a tungsten film or tungsten-containing film using a tungsten-containing reactive gas comprising one or more of tungsten pentachloride, a compound with the empirical formula WCl5 or WCl6.
    Type: Application
    Filed: October 24, 2013
    Publication date: May 1, 2014
    Inventors: Xinyu Fu, Srinivas Gandikota, Avgerinos V. Gelatos, Atif Noori, Mei Chang, David Thompson, Steve G. Ghanayem
  • Publication number: 20140112824
    Abstract: Provided are films comprising aluminum, carbon and a metal, wherein the aluminum is present in an amount greater than about 16% by elemental content and less than about 50% carbon. Also provided are methods of depositing the same.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Inventors: David Thompson, Srinivas Gandikota, Xinliang Lu, Wei Tang, Jing Zhou, Seshadri Ganguli, Jeffrey W. Anthis, Atif Noori, Faruk Gungor, Dien-Yeh Wu, Mei Chang, Shih Chung Chen
  • Publication number: 20140017408
    Abstract: Provided are methods of depositing films comprising alloys of aluminum, which may be suitable as N-metal films. Certain methods comprise exposing a substrate surface to a metal halide precursor comprising a metal halide selected from TiCl4, TaCl5 and HfCl4 to provide a metal halide at the substrate surface; purging metal halide; exposing the substrate surface to an alkyl aluminum precursor comprising one or more of dimethyaluminum hydride, diethylhydridoaluminum, methyldihydroaluminum, and an alkyl aluminum hydrides of the formula [(CxHy)3-aAlHa]n, wherein x has a value of 1 to 3, y has a value of 2x+2, a has a value of 1 to 2, and n has a value of 1 to 4; and exposing the substrate surface to an alane-containing precursor comprising one or more of dimethylethylamine alane, methylpyrrolidinealane, di(methylpyrolidine)alane, and trimethyl amine alane borane. Other methods comprise exposing a substrate surface to a metal precursor and trimethyl amine alane borane.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 16, 2014
    Inventors: Srinivas Gandikota, Xinliang Lu, Shih Chung Chen, Wei Tang, Jing Zhou, Seshadri Ganguli, David Thompson, Jeffrey W. Anthis, Atif Noori, Faruk Gungor, Dien-Yeh Wu, Mei Chang, Xinyu Fu, Yu Lei
  • Patent number: 8592305
    Abstract: Provided are methods of providing aluminum-doped TaSix films. Doping TaSix films allows for the tuning of the work function value to make the TaSix film better suited as an N-metal for NMOS applications. One such method relates to soaking a TaSix film with an aluminum-containing compound. Another method relates to depositing a TaSix film, soaking with an aluminum-containing compound, and repeating for a thicker film. A third method relates to depositing an aluminum-doped TaSix film using tantalum, aluminum and silicon precursors.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Seshadri Ganguli, Shih Chung Chen, Atif Noori, Maitreyee Mahajani, Mei Chang
  • Publication number: 20130295759
    Abstract: Provided are methods for making metal gates suitable for FinFET structures. The methods described herein generally involve forming a high-k dielectric material on a semiconductor substrate; depositing a high-k dielectric cap layer over the high-k dielectric material; depositing a PMOS work function layer having a positive work function value; depositing an NMOS work function layer; depositing an NMOS work function cap layer over the NMOS work function layer; removing at least a portion of the PMOS work function layer or at least a portion of the NMOS work function layer; and depositing a fill layer. Depositing a high-k dielectric cap layer, depositing a PMOS work function layer or depositing a NMOS work function cap layer may comprise atomic layer deposition of TiN, TiSiN, or TiAlN. Either PMOS or NMOS may be deposited first.
    Type: Application
    Filed: April 18, 2013
    Publication date: November 7, 2013
    Inventors: Xinliang Lu, Seshadri Ganguli, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Yu Lei, Xinyu Fu, Wei Tang, Srinivas Gandikota
  • Publication number: 20130288427
    Abstract: Described are methods for atomic layer deposition of films comprising mixed metal oxides using metal amidinate precursors. The mixed metal oxide films may comprise a lanthanide and a transition metal such as hafnium, zirconium or titanium. Such mixed metal oxide films may be used as dielectric layers in capacitors, transistors, dynamic random access memory cells, resistive random access memory cells, flash memory cells and display panels.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Inventors: Steven Hung, Atif Noori, David Thompson, Yoshihide Senzaki
  • Publication number: 20130221445
    Abstract: Provided are devices and methods utilizing TiN and/or TaN films doped with Si, Al, Ga, Ge, In and/or Hf. Such films may be used as a high-k dielectric cap layer, PMOS work function layer, aluminum barrier layer, and/or fluorine barrier. These TiSiN, TaSiN, TiAlN, TaAlN, TiGaN, TaGaN, TiGeN, TaGeN, TiInN, TaInN, TiHfN or TaHfN films can be used where TiN and/or TaN films are traditionally used, or they may be used in conjunction with TiN and/or TaN.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 29, 2013
    Inventors: Yu Lei, Srinivas Gandikota, Xinyu Fu, Wei Tang, Atif Noori
  • Publication number: 20130200518
    Abstract: Described are apparatus and methods for forming films comprise indium and arsenic. In particular, these films may be formed in a configuration of two or more chambers under “load lock” conditions. These films may include additional components as dopants, such as aluminum and/or gallium. Such films can be used in metal/silicon contacts having low contact resistances. Also disclosed are devices including the films comprising indium arsenide.
    Type: Application
    Filed: January 24, 2013
    Publication date: August 8, 2013
    Inventors: Khaled Z. Ahmed, Prabu Gopalraja, Atif Noori, Mei Chang
  • Patent number: 8501568
    Abstract: A methods of forming a flash memory device are provided. The flash memory device comprises a silicon dioxide layer on a substrate and a silicon nitride layer that is formed on the silicon dioxide layer. The properties of the silicon nitride layer can be modified by any of: exposing the silicon nitride layer to ultraviolet radiation, exposing the silicon nitride layer to an electron beam, and by plasma treating the silicon nitride layer. A dielectric material is deposited on the silicon nitride layer and a conductive date is formed over the dielectric material. The flash memory device with modified silicon nitride layer provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20130122697
    Abstract: Provided are methods of providing aluminum-doped TaSix films. Doping TaSix films allows for the tuning of the work function value to make the TaSix film better suited as an N-metal for NMOS applications. One such method relates to soaking a TaSix film with an aluminum-containing compound. Another method relates to depositing a TaSix film, soaking with an aluminum-containing compound, and repeating for a thicker film. A third method relates to depositing an aluminum-doped TaSix film using tantalum, aluminum and silicon precursors.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 16, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Xinliang Lu, Seshadri Ganguli, Michael S. Chen, Atif Noori, Shih Chung Chen, Maitreyee Mahajani, Mei Chang
  • Publication number: 20130115383
    Abstract: Provided are methods of depositing pure metal and aluminum alloy metal films. Certain methods comprises contacting a substrate surface with first and second precursors, the first precursor comprising an aluminum precursor selected from dimethylaluminum hydride, alane coordinated to an amine, and a compound having a structure represented by: wherein R is a C1-C6 alkyl group, and the second precursor comprising a metal halide. Other methods relate to sequentially exposing a substrate to a first and second precursor, the first precursor comprising an aluminum precursor as described above, and the second precursor comprising Ti(NR?2)4 or Ta(NR?2)5, wherein R? is an alkyl, alkenyl, alkynyl, keto or aldehyde group.
    Type: Application
    Filed: November 6, 2012
    Publication date: May 9, 2013
    Inventors: Xinliang Lu, David Thompson, Jeffrey W. Anthis, Mei Chang, Seshadri Ganguli, Wei Tang, Srinivas Gandikota, Atif Noori
  • Publication number: 20120322262
    Abstract: Provided are methods of depositing N-Metals onto a substrate. Methods include first depositing an initiation layer. The initiation layer may comprise or consist of cobalt, tantalum, nickel, titanium or TaAlC. These initiation layers can be used to deposit TaCx.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Xinliang Lu, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Mei Chang
  • Publication number: 20120322250
    Abstract: Provided are methods of depositing N-Metals onto a substrate. Some methods comprise providing an initiation layer of TaM or TiM layer on a substrate, wherein M is selected from aluminum, carbon, noble metals, gallium, silicon, germanium and combinations thereof; and exposing the substrate having the TaM or TiM layer to a treatment process comprising soaking the surface of the substrate with a reducing agent to provided a treated initiation layer.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Seshadri Ganguli, Xinliang Lu, Atif Noori, Maitreyee Mahajani, Shih Chung Chen, Mei Chang
  • Publication number: 20120270409
    Abstract: Provided are methods for depositing a cerium doped hafnium containing high-k dielectric film on a substrate. The reagents of specific methods include hafnium tetrachloride, an organometallic complex of cerium and water.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 25, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Hyungjun Kim, Woo-Hee Kim, Min-Kyu Kim, Steven Hung, Atif Noori, David Thompson, Jeffrey W. Anthis
  • Publication number: 20120220116
    Abstract: A deposition process including a dry etch process, followed by a deposition process of a high-k dielectric is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is energized to form a plasma of reactive gas which reacts with an oxide on the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose a substrate surface. The substrate surface is substantially free of oxides. Deposition is then used to form a layer on the substrate surface.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 30, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Atif Noori, Maitreyee Mahajani, Patricia M. Liu, Steven Hung, Tatsuya E. Sato, Mei Chang
  • Patent number: 8252653
    Abstract: A flash memory device and methods of forming a flash memory device are provided. The flash memory device includes a doped silicon nitride layer having a dopant comprising carbon, boron or oxygen. The doped silicon nitride layer generates a higher number and higher concentration of nitrogen and silicon dangling bonds in the layer and provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 28, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Patent number: 7816205
    Abstract: A flash memory device and method of forming a flash memory device are provided. The flash memory device includes a silicon nitride layer having a compositional gradient in which the ratio of silicon to nitrogen varies through the thickness of the layer. The silicon nitride layer having a compositional gradient of silicon and nitrogen provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20100096688
    Abstract: A flash memory device and method of forming a flash memory device are provided. The flash memory device includes a silicon nitride layer having a compositional gradient in which the ratio of silicon to nitrogen varies through the thickness of the layer. The silicon nitride layer having a compositional gradient of silicon and nitrogen provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20100099247
    Abstract: A methods of forming a flash memory device are provided. The flash memory device comprises a silicon dioxide layer on a substrate and a silicon nitride layer that is formed on the silicon dioxide layer. The properties of the silicon nitride layer can be modified by any of: exposing the silicon nitride layer to ultraviolet radiation, exposing the silicon nitride layer to an electron beam, and by plasma treating the silicon nitride layer. A dielectric material is deposited on the silicon nitride layer and a conductive date is formed over the dielectric material. The flash memory device with modified silicon nitride layer provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Mihaela Balseanu, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati
  • Publication number: 20100096687
    Abstract: A flash memory device and methods of forming a flash memory device are provided. The flash memory device includes a doped silicon nitride layer having a dopant comprising carbon, boron or oxygen. The doped silicon nitride layer generates a higher number and higher concentration of nitrogen and silicon dangling bonds in the layer and provides an increase in charge holding capacity and charge retention time of the unit cell of a non-volatile memory device.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 22, 2010
    Inventors: Mihaela BALSEANU, Vladimir Zubkov, Li-Qun Xia, Atif Noori, Reza Arghavani, Derek R. Witty, Amir Al-Bayati