Patents by Inventor Austin B. Schuh

Austin B. Schuh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835965
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 5, 2023
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien, Austin B. Schuh
  • Publication number: 20230135207
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Application
    Filed: June 13, 2022
    Publication date: May 4, 2023
    Applicant: Peloton Technology, Inc.
    Inventors: Austin B. SCHUH, Stephen M. ERLIEN, Stephan PLEINES, John L. JACOBS, Joshua P. SWITKES
  • Publication number: 20220229446
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Application
    Filed: August 30, 2021
    Publication date: July 21, 2022
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien, Austin B. Schuh
  • Patent number: 11360485
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 14, 2022
    Assignee: Peloton Technology, Inc.
    Inventors: Austin B. Schuh, Stephen M. Erlien, Stephan Pleines, John L. Jacobs, Joshua P. Switkes
  • Patent number: 11106220
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: August 31, 2021
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M Erlien, Austin B. Schuh
  • Patent number: 10906544
    Abstract: A variety of methods, controllers and algorithms are described for controlling a vehicle to closely follow one another safely using automatic or partially automatic control. The described control schemes are well suited for use in vehicle platooning and/or vehicle convoying applications, including truck platooning and convoying controllers. In one aspect, a power plant (such as an engine) is controlled using a control scheme arranged to attain and maintain a first target gap between the vehicles. Brakes (such as wheel brakes) are controlled in a manner configured to attain and maintain a second (shorter) target gap. Such control allows a certain degree of encroachment on the targeted gap (sometimes referred to as a gap tolerance) before the brakes are actuated. The described approaches facilitate a safe and comfortable rider experience and reduce the likelihood of the brakes being actuated unnecessarily.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: February 2, 2021
    Assignee: Peloton Technology, Inc.
    Inventors: James B. Kuszmaul, Austin B. Schuh, Stephen M. Erlien, Joshua P. Switkes
  • Patent number: 10739788
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: August 11, 2020
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M Erlien, Austin B. Schuh
  • Publication number: 20200201356
    Abstract: Systems and methods for managing platooning vehicles are described herein. In one aspect, a first vehicle may transmit information to a second vehicle indicating one or more conditions, such as an amount of brake applied at the first vehicle. Based on the condition received at a controller in the second vehicle, the controller in the second vehicle may adjust how it operates. For example, the controller in the second vehicle may adjust how much emphasis it places on one type of input as opposed to another.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 25, 2020
    Applicant: Peloton Technology, Inc.
    Inventors: Austin B. Schuh, Stephen M. Erlien, Joshua P. Switkes, James Kuszmaul, Carlos J. Rosario
  • Publication number: 20200073400
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Applicant: Peloton Technology, Inc.
    Inventors: Austin B. SCHUH, Stephen M. ERLIEN, Stephan PLEINES, John L. JACOBS, Joshua P. SWITKES
  • Patent number: 10520581
    Abstract: A variety of methods, controllers and algorithms are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 31, 2019
    Assignee: Peloton Technology, Inc.
    Inventors: Austin B. Schuh, Stephen M. Erlien, Joshua P. Switkes
  • Patent number: 10514706
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: December 24, 2019
    Assignee: Peloton Technology, Inc.
    Inventors: Austin B. Schuh, Stephen M. Erlien, Stephan Pleines, John L. Jacobs, Joshua P. Switkes
  • Publication number: 20190279513
    Abstract: The system and methods comprising various aspects of the invention described herein disclose the coordination the platooning vehicles, including embodiments in which the same subset of satellite signals from a GNSS is used by all platooning vehicles to determine coordinates for position, relative position, and/or velocity. By using a uniform set of satellites for navigation calculations, discrepancies between the systems on different vehicles can be reduced, and a more uniform accuracy is achieved, allowing more predictable platooning.
    Type: Application
    Filed: November 8, 2018
    Publication date: September 12, 2019
    Applicant: Peloton Technology, Inc.
    Inventors: Austin B. Schuh, Stephen M. Erlien, Joshua P. Switkes, Stephan Pleines, John L. Jacobs, Michael OConnor
  • Publication number: 20190265726
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Application
    Filed: January 14, 2019
    Publication date: August 29, 2019
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien, Austin B. Schuh
  • Publication number: 20190241185
    Abstract: A variety of methods, controllers and algorithms are described for controlling a vehicle to closely follow one another safely using automatic or partially automatic control. The described control schemes are well suited for use in vehicle platooning and/or vehicle convoying applications, including truck platooning and convoying controllers. In one aspect, a power plant (such as an engine) is controlled using a control scheme arranged to attain and maintain a first target gap between the vehicles. Brakes (such as wheel brakes) are controlled in a manner configured to attain and maintain a second (shorter) target gap. Such control allows a certain degree of encroachment on the targeted gap (sometimes referred to as a gap tolerance) before the brakes are actuated. The described approaches facilitate a safe and comfortable rider experience and reduce the likelihood of the brakes being actuated unnecessarily.
    Type: Application
    Filed: April 16, 2019
    Publication date: August 8, 2019
    Inventors: James B. KUSZMAUL, Austin B. SCHUH, Stephen M. ERLIEN, Joshua P. SWITKES
  • Patent number: 10369998
    Abstract: A variety of methods, controllers and algorithms are described for controlling a vehicle to closely follow one another safely using automatic or partially automatic control. The described control schemes are well suited for use in vehicle platooning and/or vehicle convoying applications, including truck platooning and convoying controllers. In one aspect, a power plant (such as an engine) is controlled using a control scheme arranged to attain and maintain a first target gap between the vehicles. Brakes (such as wheel brakes) are controlled in a manner configured to attain and maintain a second (shorter) target gap. Such control allows a certain degree of encroachment on the targeted gap (sometimes referred to as a gap tolerance) before the brakes are actuated. The described approaches facilitate a safe and comfortable rider experience and reduce the likelihood of the brakes being actuated unnecessarily.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: August 6, 2019
    Assignee: Peloton Technology, Inc.
    Inventors: James B. Kuszmaul, Austin B. Schuh, Stephen M. Erlien, Joshua P. Switkes
  • Publication number: 20190155309
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 23, 2019
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien, Austin B. Schuh
  • Patent number: 10216195
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: February 26, 2019
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua Philip Switkes, Stephen M. Erlien, Austin B. Schuh
  • Patent number: 10152064
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: December 11, 2018
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua Philip Switkes, Stephen M. Erlien, Austin B. Schuh
  • Publication number: 20180267559
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 20, 2018
    Inventors: Joshua Philip SWITKES, Stephen M. ERLIEN, Austin B. SCHUH
  • Publication number: 20180217610
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Inventors: Austin B. SCHUH, Stephen M. ERLIEN, Stephan PLEINES, John L. JACOBS, Joshua P. SWITKES