Patents by Inventor Avetik R. Harutyunyan

Avetik R. Harutyunyan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200243807
    Abstract: The present disclosure relates to devices integrated with flexible batteries wherein the flexible batteries can be wearable and can provide an integration platform for various electronic devices.
    Type: Application
    Filed: September 4, 2019
    Publication date: July 30, 2020
    Inventor: Avetik R. Harutyunyan
  • Publication number: 20200239317
    Abstract: The present disclosure is directed to methods for production of composites of carbon nanotubes and electrode active material from liquid dispersions. Composites thusly produced may be used as self-standing electrodes without binder or collector. Moreover, the method of the present disclosure may allow more cost-efficient production while simultaneously affording control over nanotube loading and composite thickness.
    Type: Application
    Filed: February 27, 2019
    Publication date: July 30, 2020
    Inventor: Avetik R. HARUTYUNYAN
  • Publication number: 20200083560
    Abstract: The present disclosure relates to flexible batteries made of one or more self-standing flexible anodes and cathodes. The flexible batteries are free of binder, wherein the output of the batteries is substantially the same when bent, rolled, or folded compared to the output when flat.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 12, 2020
    Inventors: Avetik R. HARUTYUNYAN, Oleg A. KUZNETSOV, Elena Mora PIGOS
  • Publication number: 20190368032
    Abstract: A continuous method for preparing a metal substrate having a graphene-comprising coating, the method including providing a metal substrate, continuously advancing the metal substrate into and through a processing chamber, the processing chamber having one or more heating elements, providing electromagnetic radiation to the metal substrate via the one or more heating elements to heat the metal substrate, wherein heating the metal substrates forms a molten metal layer on a top surface of the metal substrate, contacting the molten metal layer with a carbon source gas to form a graphene-comprising coating substantially covering the molten metal layer of the top surface of the metal substrate, solidifying the molten metal layer, and advancing the metal substrate having the graphene-comprising coating out of the processing chamber.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Inventor: Avetik R. HARUTYUNYAN
  • Patent number: 10071360
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: September 11, 2018
    Assignee: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Publication number: 20180118573
    Abstract: Methods and processes for synthesizing high quality carbon single-walled nanotubes (SWNTs) are provided. A carbon precursor gas at reduced concentration (pressure) is contacted with a catalyst deposited on a support and at temperature about 10° C. above the SWNT synthesis onset temperature, but below the thermal decomposition temperature of the carbon precursor gas for given growth conditions. The concentration (pressure) of the carbon precursor gas can be controlled by reducing the total pressure of the gas, or by diluting with an inert carrier gas, or both. The methods produce SWNTs with the ratio of G-band to D-band in Raman spectra (IG:ID) of about 5 to about 200.
    Type: Application
    Filed: December 22, 2017
    Publication date: May 3, 2018
    Inventors: Avetik R. HARUTYUNYAN, Oleg Kuznetsov
  • Publication number: 20170157590
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventor: Avetik R. HARUTYUNYAN
  • Patent number: 9616376
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: April 11, 2017
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Avetik R. Harutyunyan
  • Publication number: 20160023906
    Abstract: Methods and processes for synthesizing high quality carbon single-walled nanotubes (SWNTs) are provided. A carbon precursor gas at reduced concentration (pressure) is contacted with a catalyst deposited on a support and at temperature about 10° C. above the SWNT synthesis onset temperature, but below the thermal decomposition temperature of the carbon precursor gas for given growth conditions. The concentration (pressure) of the carbon precursor gas can be controlled by reducing the total pressure of the gas, or by diluting with an inert carrier gas, or both. The methods produce SWNTs with the ratio of G-band to D-band in Raman spectra (IG:ID) of about 5 to about 200.
    Type: Application
    Filed: September 30, 2015
    Publication date: January 28, 2016
    Inventors: Avetik R. Harutyunyan, Oleg Kuznetsov
  • Patent number: 9174847
    Abstract: Methods and processes for synthesizing high quality carbon single-walled nanotubes (SWNTs) are provided. A carbon precursor gas at reduced concentration (pressure) is contacted with a catalyst deposited on a support and at temperature about 10° C. above the SWNT synthesis onset temperature, but below the thermal decomposition temperature of the carbon precursor gas for given growth conditions. The concentration (pressure) of the carbon precursor gas can be controlled by reducing the total pressure of the gas, or by diluting with an inert carrier gas, or both. The methods produce SWNTs with the ratio of G-band to D-band in Raman spectra (IG:ID) of about 5 to about 200.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 3, 2015
    Assignee: Honda Motor Co., LTD.
    Inventors: Avetik R. Harutyunyan, Oleg Kuznetsov
  • Patent number: 8845996
    Abstract: The present disclosure is directed to a method of producing metallic single-wall carbon nanotubes by treatment of carbon nanotube producing catalysts to obtain the desired catalyst particle size to produce predominantly metallic single wall carbon nanotubes. The treatment of the carbon nanotube producing catalyst particles involves contacting the catalyst particles with a mixture of an inert gas, like He, a reductant, such as H2, and an adsorbate, like water, at an elevated temperature range, for example, at 500° C. to 860° C., for a sufficient time to obtain the catalyst particle size. In some of the present methods, the preferential growth of nanotubes with metallic conductivity of up to 91% has been demonstrated.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: September 30, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Publication number: 20140194658
    Abstract: The electronic structure of nanowires, nanotubes and thin films deposited on a substrate is varied by doping with electrons or holes. The electronic structure can then be tuned by varying the support material or by applying a gate voltage. The electronic structure can be controlled to absorb a gas, store a gas, or release a gas, such as hydrogen, oxygen, ammonia, carbon dioxide, and the like.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Patent number: 8728430
    Abstract: The present disclosure is directed to a method for producing SWCNT from endothermic carbon-containing feedstock, such as, methane gas, using an activated alumina supported Fe:Mo catalyst. The SWCNT growth temperature is less than about 560° C., and the catalyst is activated by exposure to a reducing atmosphere at a temperature greater than about 900° C.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: May 20, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Elena Mora, John M. Pigos, Avetik R. Harutyunyan
  • Patent number: 8684284
    Abstract: Methods, processes, and apparatuses for the large scale synthesis of carbon nanostructures are provided. The apparatus for continuous large scale production of SWNTs includes a chamber. Positioned in one end of the chamber is a piston and at the other end is a tangential vortex created by gases forced into the chamber from opposite sides of the chamber walls. The chamber can be heated to reduce or eliminate agglomeration of small particles. The piston is used to push the catalyst towards the vortex, and the injection rate is controlled by the speed of the piston and the gas flow rate to create the vortex that also act as the transport gas. Thus, greater than 1 kg/h of an aerosolized, deagglomerated dry powder catalyst can be delivered to the reactor at a constant flow rate.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: April 1, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Avetik R. Harutyunyan
  • Patent number: 8591858
    Abstract: Methods and processes for synthesizing high quality carbon single-walled nanotubes (SWNTs) are provided. The method provides the means for optimization of amount of carbon precursor and transport gas per unit weight of catalyst. In certain aspects, methods are provided wherein a supported metal catalyst is contacted with a carbon precursor gas at about one atmosphere pressure, wherein SWNTs are synthesized at a growth rate of about 0.002 ?m/sec to about 0.003 ?m/sec and the SWNTs have a ratio of G-band to D-band in Raman spectra (IG:ID) of greater than about 4. Efficiencies of about 20% can be achieved when contacting the catalyst deposited on a support with a carbon precursor gas with a flow rates of about 4.2×10?3 mol CH4/sec·g (Fe) at 780° C. Hydrocarbon flow rates of about 1.7 10?2 mol CH4/sec·g (Fe) and higher result in faster carbon SWNTs growth with improved quality. Slower rates of carbon atoms supply (˜4.5×1020 C atoms/s·g Fe or 6.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik R. Harutyunyan, Elena Mora
  • Publication number: 20130259795
    Abstract: The present disclosure is directed to a method for producing SWCNT from endothermic carbon-containing feedstock, such as, methane gas, using an activated alumina supported Fe:Mo catalyst. The SWCNT growth temperature is less than about 560° C., and the catalyst is activated by exposure to a reducing atmosphere at a temperature greater than about 900° C.
    Type: Application
    Filed: June 18, 2009
    Publication date: October 3, 2013
    Inventors: Elena Mora, John M. Pigos, Avetik R. Harutyunyan
  • Patent number: 8518711
    Abstract: Methods and processes for quantitatively determining the ratio of the metallic to semiconductor tubes in the sample single-wall carbon nanotubes is provided. The single-walled carbon nanotubes can be sonicated to debundle the bulk material. The debundled SWNTs can be coated with a polymer, such as sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SDPS), and the coated SWNTs can be deposited on a substrate. The total number of tubes can be determined by atomic force microscopy (AFM). The semiconducting nanotubes can be determined by photoluminescence spectroscopy. The combination of photoluminescence and AFM measurements provides a quantitative ratio of the metallic to semiconductor tubes in the sample.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: August 27, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik R. Harutyunyan, Oleg Kuznetsov
  • Publication number: 20130180018
    Abstract: Methods and processes for quantitatively determining the ratio of the metallic to semiconductor tubes in the sample single-wall carbon nanotubes is provided. The single-walled carbon nanotubes can be sonicated to debundle the bulk material. The debundled SWNTs can be coated with a polymer, such as sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SDPS), and the coated SWNTs can be deposited on a substrate. The total number of tubes can be determined by atomic force microscopy (AFM). The semiconducting nanotubes can be determined by photoluminescence spectroscopy. The combination of photoluminescence and AFM measurements provides a quantitative ratio of the metallic to semiconductor tubes in the sample.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 11, 2013
    Applicant: Honda Motor Co., Ltd
    Inventors: Avetik R. Harutyunyan, Oleg Kuznetsov
  • Publication number: 20120282594
    Abstract: Sensors based on single-walled carbon nanotubes and graphene which demonstrate extreme sensitivity as reflected in their electrical conductivity to gaseous molecules, such as NO, NO2 and NH3, when exposed to in situ ultraviolet (UV) illumination during measurement of the analytes are disclosed. The sensors are capable of detection limits of NO down to almost 150 parts-per-quadrillion (“ppq”), detection limits of NO2 to 2 parts-per-trillion (“ppt”), and detection limits of NH3 of 33 ppt.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 8, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Gugang CHEN, Avetik R. HARUTYUNYAN
  • Publication number: 20120237436
    Abstract: Methods and processes for synthesizing single-wall carbon nanotubes are provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 3 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon. Further, the rate at which hydrocarbons are fed into the reactor is equivalent to the rate at which the hydrocarbons react for given synthesis temperature. The methods produce carbon single-walled nanotubes having longer lengths.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 20, 2012
    Applicants: THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION, HONDA MOTOR CO., LTD.
    Inventors: Avetik R. Harutyunyan, Toshio Tokune, Elena Mora