Patents by Inventor Avi Tepman

Avi Tepman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8500975
    Abstract: A rectangular magnetron placed at the back of a rectangular sputtering target for coating a rectangular panel and having magnets of opposed polarities arranged to form a gap therebetween corresponding to a plasma track adjacent the target which extends in a closed serpentine or spiral loop. The spiral may have a large number of wraps and the closed loop may be folded before wrapping. The magnetron has a size only somewhat less than that of the target and is scanned in the two perpendicular directions of the target with a scan length of, for example, about 100 mm for a 2 m target corresponding to at least the separation of the gap between parallel portions of the loop. A central ferromagnetic shim beneath some magnets in the loop may compensate for vertical droop. The magnetron may be scanned in two alternating double-Z patterns rotated 90° between them.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: August 6, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Hien Minh Huu Le, Akihiro Hosokawa, Avi Tepman
  • Publication number: 20130168232
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 4, 2013
    Inventors: Jaim NULMAN, Sergio EDELSTEIN, Mani SUBRAMANI, Zheng XU, Howard E. GRUNES, Avi TEPMAN, John C. FORSTER, Praburam GOPALRAJA
  • Patent number: 8398832
    Abstract: A sputtering coil for a plasma chamber in a semiconductor fabrication system is provided. The sputtering coil couples energy into a plasma and also provides a source of sputtering material to be sputtered onto a workpiece from the coil to supplement material being sputtered from a target onto the workpiece. Alternatively a plurality of coils may be provided, one primarily for coupling energy into the plasma and the other primarily for providing a supplemental source of sputtering material to be sputtered on the workpiece.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: March 19, 2013
    Assignee: Applied Materials Inc.
    Inventors: Jaim Nulman, Sergio Edelstein, Mani Subramani, Zheng Xu, Howard E. Grunes, Avi Tepman, John C. Forster, Praburam Gopalraja
  • Patent number: 7774887
    Abstract: A scrubber box is provided that includes a tank adapted to receive a substrate for cleaning, supports outside of the tank and adapted to couple to ends of scrubber brushes disposed within the tank, a motor mounted to each of the supports and adapted to rotate the scrubber brushes, a base to which the supports are pivotally mounted via spherical bearings adapted to permit toe-in of the scrubber brushes, a brush gap actuator adapted, via a crank and rocker mechanism, to substantially simultaneously pivot the supports toward or away from each other so as to permit the scrubber brushes to substantially simultaneously achieve or break contact with the substrate, and a toe-in actuator adapted to move two of the spherical bearings toward or away from each other so as to adjust a toe-in angle between the scrubber brushes.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: August 17, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Avi Tepman, Kenneth R. Reynolds, Younes Achkire, Dan A. Marohl, Steve G. Ghanayem, Alexander S. Polyak, Gary Ettinger, Haochuan Zhang, Hui Chen
  • Publication number: 20100084023
    Abstract: Embodiments described herein provide an application for delivery of fluids within substrate processing systems. More particularly, embodiments described herein provide applications for delivery of processing chemicals within substrate processing systems. In one embodiment, a fluid delivery system is provided. The fluid delivery system comprises a bulk fluid source for supplying fluids, a fluid delivery module for controlling and monitoring a ratio of fluids flowing from the bulk fluid source, a first stream line positioned downstream from the fluid delivery module, a first switch positioned along the first stream line, a second stream line positioned downstream from the fluid delivery module, and a second switch positioned along the second stream line, wherein the fluid delivery module splits the fluids from the bulk fluid source into two streams flowing through the first stream line and the second stream line according to a pre-defined ratio.
    Type: Application
    Filed: October 7, 2008
    Publication date: April 8, 2010
    Inventors: Chris Melcer, Thuy Britcher, Avi Tepman, Simon Y. Yavelberg, Sheshraj L. Tulshibagwale
  • Patent number: 7550066
    Abstract: A sputtering target, particularly for sputter depositing a target material onto large rectangular panels, in which a plurality of target tiles are bonded to a backing plate in a two-dimensional non-rectangular array such that the tiles meet at interstices of no more than three tile, thus locking the tiles against excessive misalignment during bonding. The rectangular tiles may be arranged in staggered rows or in a herringbone or zig-zag pattern. Hexagonal and triangular tiles also provide many of the advantages of the invention.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 23, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Avi Tepman
  • Patent number: 7513982
    Abstract: A generally rectangular magnetron placed at the back of a rectangular target to intensify the plasma in a sputter reactor configured for sputtering target material onto a rectangular panel. The magnetron has a size only somewhat less than that of the target and is scanned in the two perpendicular directions of the target with a scan length of, for example, about 100 mm for a 2 m target. The scan may follow a double-Z pattern along two links parallel to a target side and the two connecting diagonals. The magnetron includes a closed plasma loop formed in a convolute shape, for example, serpentine or rectangularized helix with an inner pole of nearly constant width extending along a single path and having one magnetic polarity completely surrounded by an outer pole having the opposed polarity.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: April 7, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Avi Tepman
  • Patent number: 7497932
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Anna Marie Lloyd, legal representative, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier, Mark Lloyd
  • Patent number: 7459056
    Abstract: In a first aspect, a first apparatus is provided for a chemical mechanical polishing (CMP) process. The first apparatus includes (1) a rotatable member; (2) an end effector adapted to receive and retain a conditioning disk; and (3) an elastic device disposed between the rotatable member and the end effector. The elastic device is (a) adapted to rotate the end effector via a torque from the rotatable member, and (b) flexibly extensible so as to impart a force to the end effector while permitting the end effector to deviate from a perpendicular alignment with the rotatable member in order for a conditioning surface of the conditioning disk to conform to an irregular polishing surface of a pad being conditioned. Numerous other aspects are provided, including methods and apparatus for using liquid or gas to deter polishing slurry or debris from entering the conditioning head.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Alexander S Polyak, Avi Tepman
  • Publication number: 20080292433
    Abstract: The present invention generally comprises equipment for an automated high volume batch work-piece manufacturing factory comprising work-piece handling and work-piece processing in a high productivity factory architecture capable of producing 1,000 or more work-piece an hour. The work-pieces may be presented to the equipment from a stacked supply to a parallel array. Additionally, the work-pieces may be transferred between manufacturing architectures by an array to array batch transfer. The work-pieces may be transferred within the manufacturing architecture in a parallel to parallel batch transfer operation. The robotic operations may be between robotic devices, between robotic devices and processing equipment, and within processing equipment.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 27, 2008
    Inventors: Robert Z. Bachrach, Avi Tepman, Alexander S. Polyak
  • Publication number: 20080279672
    Abstract: The present invention generally comprises equipment for an automated high volume batch work-piece manufacturing factory comprising work-piece handling and work-piece processing in a high productivity factory architecture capable of producing 1,000 or more work-piece an hour. The work-pieces may be presented to the equipment from a stacked supply to a parallel array. Additionally, the work-pieces may be transferred between manufacturing architectures by an array to array batch transfer. The work-pieces may be transferred within the manufacturing architecture in a parallel to parallel batch transfer operation. The robotic operations may be between robotic devices, between robotic devices and processing equipment, and within processing equipment.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 13, 2008
    Inventors: ROBERT Z. BACHRACH, Avi Tepman, Alexander S. Polyak
  • Publication number: 20080279658
    Abstract: The present invention generally comprises equipment for an automated high volume batch work-piece manufacturing factory comprising work-piece handling and work-piece processing in a high productivity factory architecture capable of producing 1,000 or more work-piece an hour. The work-pieces may be presented to the equipment from a stacked supply to a parallel array. Additionally, the work-pieces may be transferred between manufacturing architectures by an array to array batch transfer. The work-pieces may be transferred within the manufacturing architecture in a parallel to parallel batch transfer operation. The robotic operations may be between robotic devices, between robotic devices and processing equipment, and within processing equipment.
    Type: Application
    Filed: May 11, 2007
    Publication date: November 13, 2008
    Inventors: Robert Z. Bachrach, Avi Tepman, Alexander S. Polyak
  • Publication number: 20080210258
    Abstract: A scrubber box is provided that includes a tank adapted to receive a substrate for cleaning, supports outside of the tank and adapted to couple to ends of scrubber brushes disposed within the tank, a motor mounted to each of the supports and adapted to rotate the scrubber brushes, a base to which the supports are pivotally mounted via spherical bearings adapted to permit toe-in of the scrubber brushes, a brush gap actuator adapted, via a crank and rocker mechanism, to substantially simultaneously pivot the supports toward or away from each other so as to permit the scrubber brushes to substantially simultaneously achieve or break contact with the substrate, and a toe-in actuator adapted to move two of the spherical bearings toward or away from each other so as to adjust a toe-in angle between the scrubber brushes.
    Type: Application
    Filed: April 14, 2008
    Publication date: September 4, 2008
    Inventors: Joseph Yudovsky, Avi Tepman, Kenneth R. Reynolds, Younes Achkire, Dan A. Marohl, Steve G. Ghanayem, Alexander S. Polyak, Gary Ettinger, Haochuan Zhang, Hui Chen
  • Patent number: 7377002
    Abstract: A scrubber box is provided that includes a tank adapted to receive a substrate for cleaning, supports outside of the tank and adapted to couple to ends of scrubber brushes disposed within the tank, a motor mounted to each of the supports and adapted to rotate the scrubber brushes, a base to which the supports are pivotally mounted via spherical bearings adapted to permit toe-in of the scrubber brushes, a brush gap actuator adapted, via a crank and rocker mechanism, to substantially simultaneously pivot the supports toward or away from each other so as to permit the scrubber brushes to substantially simultaneously achieve or break contact with the substrate, and a toe-in actuator adapted to move two of the spherical bearings toward or away from each other so as to adjust a toe-in angle between the scrubber brushes.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 27, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Avi Tepman, Kenneth R. Reynolds, Younes Achkire, Dan A. Marohl, Steve G. Ghanayem, Alexander S. Polyak, Gary Ettinger, Haochuan Zhang, Hui Chen
  • Publication number: 20080057836
    Abstract: In a first aspect, a first apparatus is provided for a chemical mechanical polishing (CMP) process. The first apparatus includes (1) a rotatable member; (2) an end effector adapted to receive and retain a conditioning disk; and (3) an elastic device disposed between the rotatable member and the end effector. The elastic device is (a) adapted to rotate the end effector via a torque from the rotatable member, and (b) flexibly extensible so as to impart a force to the end effector while permitting the end effector to deviate from a perpendicular alignment with the rotatable member in order for a conditioning surface of the conditioning disk to conform to an irregular polishing surface of a pad being conditioned. Numerous other aspects are provided, including methods and apparatus for using liquid or gas to deter polishing slurry or debris from entering the conditioning head.
    Type: Application
    Filed: October 29, 2007
    Publication date: March 6, 2008
    Inventors: Alexander Polyak, Avi Tepman
  • Publication number: 20080038998
    Abstract: A polishing fluid delivery apparatus has been provided that in one embodiment includes a support member, a dispense arm, a polishing fluid delivery tube and a variable restricting device. The dispense arm extends from an upper portion of the support member and has an outlet of the delivery tube coupled thereto. The restricting device interfaces with the delivery tube and is adapted to provide a variable restriction to flow passing through the delivery tube. In another embodiment, the restricting device is a pinch valve and the tube in continuous from the outlet to beyond a portion that interfaces with the pinch valve. In yet another embodiment, the position of the dispense arm is controllable.
    Type: Application
    Filed: October 22, 2007
    Publication date: February 14, 2008
    Inventors: Alexander Polyak, Avi Tepman
  • Patent number: 7288165
    Abstract: In a first aspect, a first apparatus is provided for a chemical mechanical polishing (CMP) process. The first apparatus includes (1) a rotatable member; (2) an end effector adapted to receive and retain a conditioning disk; and (3) an elastic device disposed between the rotatable member and the end effector. The elastic device is (a) adapted to rotate the end effector via a torque from the rotatable member, and (b) flexibly extensible so as to impart a force to the end effector while permitting the end effector to deviate from a perpendicular alignment with the rotatable member in order for a conditioning surface of the conditioning disk to conform to an irregular polishing surface of a pad being conditioned. Numerous other aspects are provided, including methods and apparatus for using liquid or gas to deter polishing slurry or debris from entering the conditioning head.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: October 30, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Alexander S Polyak, Avi Tepman
  • Patent number: 7256132
    Abstract: A semiconductor substrate centering mechanism includes a plurality of substrate support pins, each pin having a top surface. The top surfaces of the pins define a plane in which the substrate is supported. Each pin has a tab mounted eccentrically at the top surface of the pin. The tabs extend upwardly relative to the top surfaces of the pins. The centering mechanism further includes a pin rotation mechanism adapted to rotate each pin. The pin rotation mechanism rotates the pins between a first position in which the tabs define an envelope that is larger than a circumference of the substrate and a second position in which the tabs define a centered position for the substrate. A telescoping arrangement of nesting shield segments may also be provided for each pin to prevent processing fluid from reaching a shaft of the pin.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 14, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Alexander Lerner, Avi Tepman, Donald Olgato
  • Publication number: 20070012562
    Abstract: A rectangular magnetron placed at the back of a rectangular sputtering target for coating a rectangular panel and having magnets of opposed polarities arranged to form a gap therebetween corresponding to a plasma track adjacent the target which extends in a closed serpentine or spiral loop. The spiral may have a large number of wraps and the closed loop may be folded before wrapping. The magnetron has a size only somewhat less than that of the target and is scanned in the two perpendicular directions of the target with a scan length of, for example, about 100 mm for a 2 m target corresponding to at least the separation of the gap between parallel portions of the loop. A central ferromagnetic shim beneath some magnets in the loop may compensate for vertical droop. The magnetron may be scanned in two alternating double-Z patterns rotated 90° between them.
    Type: Application
    Filed: July 11, 2006
    Publication date: January 18, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Hien Minh Le, Akihiro Hosokawa, Avi Tepman
  • Publication number: 20060246690
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Application
    Filed: June 27, 2006
    Publication date: November 2, 2006
    Inventors: Yezdi Dordi, Donald Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Anna Lloyd, Joseph Stevens, Dan Marohl, Ho Shin, Eugene Ravinovich, Robin Cheung, Ashok Sinha, Avi Tepman, Dan Carl, George Birkmaier