Patents by Inventor Awni Hannun

Awni Hannun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11562733
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. Neither a phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 24, 2023
    Assignee: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Eisen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Ng
  • Patent number: 10832120
    Abstract: Systems and methods for a multi-core optimized Recurrent Neural Network (RNN) architecture are disclosed. The various architectures affect communication and synchronization operations according to the Multi-Bulk-Synchronous-Parallel (MBSP) model for a given processor. The resulting family of network architectures, referred to as MBSP-RNNs, perform similarly to a conventional RNNs having the same number of parameters, but are substantially more efficient when mapped onto a modern general purpose processor. Due to the large gain in computational efficiency, for a fixed computational budget, MBSP-RNNs outperform RNNs at applications such as end-to-end speech recognition.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: November 10, 2020
    Assignee: Baidu USA LLC
    Inventors: Gregory Diamos, Awni Hannun, Bryan Catanzaro, Dario Amodei, Erich Elsen, Jesse Engel, Shubhabrata Sengupta
  • Patent number: 10540957
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: January 21, 2020
    Assignee: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Y. Ng
  • Publication number: 20190371298
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: BAIDU USA LLC
    Inventors: Awni HANNUN, Carl CASE, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Ng
  • Patent number: 10332509
    Abstract: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 25, 2019
    Assignee: Baidu USA, LLC
    Inventors: Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Erich Elsen, Jesse Engel, Christopher Fougner, Xu Han, Awni Hannun, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Dani Yogatama, Chong Wang, Jun Zhan, Zhenyao Zhu, Dario Amodei
  • Patent number: 10319374
    Abstract: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: June 11, 2019
    Assignee: Baidu USA, LLC
    Inventors: Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Erich Elsen, Jesse Engel, Christopher Fougner, Xu Han, Awni Hannun, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Dani Yogatama, Chong Wang, Jun Zhan, Zhenyao Zhu, Dario Amodei
  • Publication number: 20170169326
    Abstract: Systems and methods for a multi-core optimized Recurrent Neural Network (RNN) architecture are disclosed. The various architectures affect communication and synchronization operations according to the Multi-Bulk-Synchronous-Parallel (MBSP) model for a given processor. The resulting family of network architectures, referred to as MBSP-RNNs, perform similarly to a conventional RNNs having the same number of parameters, but are substantially more efficient when mapped onto a modern general purpose processor. Due to the large gain in computational efficiency, for a fixed computational budget, MBSP-RNNs outperform RNNs at applications such as end-to-end speech recognition.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 15, 2017
    Applicant: Baidu USA LLC
    Inventors: Gregory Diamos, Awni Hannun, Bryan Catanzaro, Dario Amodei, Erich Elsen, Jesse Engel, Shubhabrata Sengupta
  • Publication number: 20170148431
    Abstract: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 25, 2017
    Applicant: Baidu USA LLC
    Inventors: Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Erich Elsen, Jesse Engel, Christopher Fougner, Xu Han, Awni Hannun, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Dani Yogatama, Chong Wang, Jun Zhan, Zhenyao Zhu, Dario Amodei
  • Publication number: 20170148433
    Abstract: Embodiments of end-to-end deep learning systems and methods are disclosed to recognize speech of vastly different languages, such as English or Mandarin Chinese. In embodiments, the entire pipelines of hand-engineered components are replaced with neural networks, and the end-to-end learning allows handling a diverse variety of speech including noisy environments, accents, and different languages. Using a trained embodiment and an embodiment of a batch dispatch technique with GPUs in a data center, an end-to-end deep learning system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
    Type: Application
    Filed: November 21, 2016
    Publication date: May 25, 2017
    Applicant: Baidu USA LLC
    Inventors: Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Erich Elsen, Jesse Engel, Christopher Fougner, Xu Han, Awni Hannun, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Dani Yogatama, Chong Wang, Jun Zhan, Zhenyao Zhu, Dario Amodei
  • Publication number: 20160171974
    Abstract: Presented herein are embodiments of state-of-the-art speech recognition systems developed using end-to-end deep learning. In embodiments, the model architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, embodiments of the system do not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learn a function that is robust to such effects. A phoneme dictionary, nor even the concept of a “phoneme,” is needed. Embodiments include a well-optimized recurrent neural network (RNN) training system that can use multiple GPUs, as well as a set of novel data synthesis techniques that allows for a large amount of varied data for training to be efficiently obtained.
    Type: Application
    Filed: June 9, 2015
    Publication date: June 16, 2016
    Applicant: BAIDU USA LLC
    Inventors: Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Gregory Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubhabrata Sengupta, Adam Coates, Andrew Y. Ng