Patents by Inventor Axel Preusse

Axel Preusse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7781329
    Abstract: By introducing an additional heat treatment prior to and/or after contacting a sensitive dielectric material with wet chemical agents, such as an electrolyte solution, enhanced performance with respect to leakage currents or dielectric strength may be accomplished during the fabrication of advanced semiconductor devices. For example, metal cap layers for metal lines may be provided on the basis of electroless deposition techniques, wherein the additional heat treatment(s) may provide the required electrical performance.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: August 24, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Markus Nopper, Thomas Ortleb, Juergen Boemmels
  • Patent number: 7745327
    Abstract: By appropriately designing a plurality of deposition steps and intermediate sputter processes, the formation of a barrier material within a via opening may be accomplished on the basis of a highly efficient process strategy that readily integrates conductive cap layers formed above metal-containing regions into well-approved process sequences.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: June 29, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Michael Friedemann, Robert Seidel, Berit Freudenberg
  • Publication number: 20100133648
    Abstract: In sophisticated metallization systems, air gaps may be formed on the basis of a self-aligned patterning regime during which the conductive cap material of metal lines may be protected by providing one or more materials, which may subsequently be removed. Consequently, the etch behavior and the electrical characteristics of metal lines during the self-aligned patterning regime may be individually adjusted.
    Type: Application
    Filed: October 23, 2009
    Publication date: June 3, 2010
    Inventors: Robert Seidel, Markus Nopper, Axel Preusse
  • Publication number: 20100024724
    Abstract: The present invention is directed to methods and apparatuses for removing bubbles from a process liquid. The process liquid can comprise a plating solution used in a plating tool. The process liquid is supplied to a tank. A plurality of streams of the process liquid are directed towards a surface of the process liquid from below. This can be done by feeding the process liquid to a flow distributor comprising a plurality of openings providing flow communication between an inner volume of the flow distributor and a main volume of the tank. Before leaving the tank through an outlet, the process liquid flows through a flow barrier.
    Type: Application
    Filed: September 25, 2009
    Publication date: February 4, 2010
    Inventors: Helge Hartz, Markus Nopper, Axel Preusse
  • Publication number: 20090325375
    Abstract: By introducing an additional heat treatment prior to and/or after contacting a sensitive dielectric material with wet chemical agents, such as an electrolyte solution, enhanced performance with respect to leakage currents or dielectric strength may be accomplished during the fabrication of advanced semiconductor devices. For example, metal cap layers for metal lines may be provided on the basis of electroless deposition techniques, wherein the additional heat treatment(s) may provide the required electrical performance.
    Type: Application
    Filed: April 17, 2009
    Publication date: December 31, 2009
    Inventors: Axel Preusse, Markus Nopper, Thomas Ortleb, Juergen Boemmels
  • Patent number: 7615103
    Abstract: The present invention is directed to methods and apparatuses for removing bubbles from a process liquid. The process liquid can comprise a plating solution used in a plating tool. The process liquid is supplied to a tank. A plurality of streams of the process liquid are directed towards a surface of the process liquid from below. This can be done by feeding the process liquid to a flow distributor comprising a plurality of openings providing flow communication between an inner volume of the flow distributor and a main volume of the tank. Before leaving the tank through an outlet, the process liquid flows through a flow barrier.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: November 10, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Helge Hartz, Markus Nopper, Axel Preusse
  • Publication number: 20090243109
    Abstract: A conductive cap material for a copper region may be provided with enhanced etch resistivity by taking into consideration the standard electrode potential of one or more of the species contained therein. For example, instead of a conventionally used CoWP alloy, a modified alloy may be used, by substituting the cobalt species by a metallic species having a less negative standard electrode potential, such as nickel. Consequently, device performance may be enhanced, while at the same time the overall process complexity may be reduced.
    Type: Application
    Filed: January 19, 2009
    Publication date: October 1, 2009
    Inventors: Markus Nopper, Axel Preusse, Robert Seidel
  • Patent number: 7560381
    Abstract: In an enhanced technique for electroless metal deposition, the substrate is heated to or above the operating temperature for the specific plating solution, while the plating solution may be maintained at a non-critical low temperature to substantially prevent spontaneous self-decomposition within the plating tool. Hence, significant advantages with respect to process control and cost of ownership may be achieved.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: July 14, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Markus Nopper, Axel Preusse, Matthias Bonkass
  • Patent number: 7517782
    Abstract: By performing an electroless deposition and an electro deposition process in situ, highly reliable metallizations may be provided, wherein limitations with respect to contaminations and device scaling, encountered by conventional chemical vapor deposition (CVD), atomic layer deposition (ALD) and physical vapor deposition (PVD) techniques for the formation of seed layers may be overcome. In some embodiments, a barrier layer is also deposited on the basis of a wet chemical deposition process.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 14, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Susanne Wehner, Markus Nopper
  • Publication number: 20090061629
    Abstract: By suppressing the presence of free oxygen during a cleaning process and a subsequent electrochemical deposition of a seed layer, the quality of a corresponding interface between the barrier material and the seed layer may be enhanced, thereby also improving performance and the characteristics of the finally obtained metal region. Thus, by identifying free oxygen as a main source for negatively affecting the characteristics of metals during a “direct on barrier” plating process, efficient strategies have been developed and are disclosed herein to provide a reliable technique for volume production of sophisticated semiconductor devices.
    Type: Application
    Filed: July 31, 2008
    Publication date: March 5, 2009
    Inventors: Axel Preusse, Charlotte Emnet, Susanne Wehner
  • Publication number: 20090061621
    Abstract: By suppressing the presence of free oxygen during a cleaning process and a subsequent electrochemical deposition of a seed layer, the quality of a corresponding interface between the barrier material and the seed layer may be enhanced, thereby also improving performance and the characteristics of the finally obtained metal region. Thus, by identifying free oxygen as a main source for negatively affecting the characteristics of metals during a “direct on barrier” plating process, efficient strategies have been developed and are disclosed herein to provide a reliable technique for volume production of sophisticated semiconductor devices.
    Type: Application
    Filed: March 11, 2008
    Publication date: March 5, 2009
    Inventors: Axel Preusse, Charlotte Emnet, Susanne Wehner
  • Patent number: 7476552
    Abstract: The present invention allows correcting malfunctions occurring in the formation of a cap layer on an electrical element in a semiconductor substrate. It is detected whether a malfunction occurred in the formation of the cap layer. If a malfunction in the formation of the cap layer was detected, a rework procedure is performed. The rework procedure can comprise exposing the substrate to a first acid and a second acid.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: January 13, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Uwe Gunter Stoeckgen, Markus Nopper
  • Publication number: 20080206986
    Abstract: By appropriately designing a plurality of deposition steps and intermediate sputter processes, the formation of a barrier material within a via opening may be accomplished on the basis of a highly efficient process strategy that readily integrates conductive cap layers formed above metal-containing regions into well-approved process sequences.
    Type: Application
    Filed: October 12, 2007
    Publication date: August 28, 2008
    Inventors: Axel Preusse, Berit Freudenberg, Michael Friedemann
  • Publication number: 20080182409
    Abstract: By forming an activation/nucleation layer selectively at a bottom of an opening, efficient electroless deposition techniques may be used for forming contacts, vias and trenches of advanced semiconductor devices. By selectively providing the activation material, a self-aligned bottom-to-top fill behavior may be obtained.
    Type: Application
    Filed: July 25, 2007
    Publication date: July 31, 2008
    Inventors: Robert Seidel, Axel Preusse, Ralf Richter
  • Publication number: 20080182406
    Abstract: By appropriately designing a plurality of deposition steps and intermediate sputter processes, the formation of a barrier material within a via opening may be accomplished on the basis of a highly efficient process strategy that readily integrates conductive cap layers formed above metal-containing regions into well-approved process sequences.
    Type: Application
    Filed: June 12, 2007
    Publication date: July 31, 2008
    Inventors: Axel Preusse, Michael Friedemann, Robert Seidel, Berit Freudenberg
  • Patent number: 7375031
    Abstract: By improving the purity of metal lines and the crystalline structure, the overall performance of metal lines, especially of highly scaled copper-based semiconductor devices, may be enhanced. The modification of the crystalline structure of the metal lines may be performed by a heat treatment generating locally restricted heating zones, which are scanned along the length direction of the metal lines, and/or a heat treatment comprising a heating step in a vacuum ambient followed by a heating step in a reducing ambient.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: May 20, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Markus Keil, Wolfgang Buchholtz, Petra Hetzer, Elvira Buchholtz
  • Publication number: 20070178690
    Abstract: By using a patterned sacrificial layer for forming highly conductive metal regions, the formation of a reliable conductive barrier layer may be accomplished prior to the actual deposition of a low-k dielectric material. Hence, even highly porous dielectrics may be used in combination with highly conductive metals, substantially without compromising the diffusion characteristics and the electromigration performance. Hence, metallization layers for highly scaled semiconductor devices having critical dimensions of 50 nm and significantly less may be provided.
    Type: Application
    Filed: October 4, 2006
    Publication date: August 2, 2007
    Inventors: Markus Nopper, Udo Nothelfer, Axel Preusse
  • Publication number: 20070166982
    Abstract: By performing an electroless deposition and an electro deposition process in situ, highly reliable metallizations may be provided, wherein limitations with respect to contaminations and device scaling, encountered by conventional chemical vapor deposition (CVD), atomic layer deposition (ALD) and physical vapor deposition (PVD) techniques for the formation of seed layers may be overcome. In some embodiments, a barrier layer is also deposited on the basis of a wet chemical deposition process.
    Type: Application
    Filed: September 28, 2006
    Publication date: July 19, 2007
    Inventors: Axel Preusse, Susanne Wehner, Markus Nopper
  • Patent number: 7169664
    Abstract: According to the present invention, a metal and a barrier material, such as copper and a tantalum-based barrier material, are effectively removed from the wafer edge and especially from the bevel by using an etchant that comprises a diluted mixture of hydrofluoric acid and nitric acid. The method is compatible with currently available etch modules for removing metal from the wafer edge, wherein, depending on the hardware specifics, copper, barrier material and dielectric material may be removed in a single etch step, or a first etch step may be performed substantially without any nitric acid so as to avoid the formation of nitric oxides. In this way, the formation of instable layer stacks may be substantially avoided, thereby reducing the risk of material delamination from the substrate edge.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: January 30, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Markus Nopper, Holger Schührer
  • Publication number: 20060246721
    Abstract: By improving the purity of metal lines and the crystalline structure, the overall performance of metal lines, especially of highly scaled copper-based semiconductor devices, may be enhanced. The modification of the crystalline structure of the metal lines may be performed by a heat treatment generating locally restricted heating zones, which are scanned along the length direction of the metal lines, and/or a heat treatment comprising a heating step in a vacuum ambient followed by a heating step in a reducing ambient.
    Type: Application
    Filed: December 2, 2005
    Publication date: November 2, 2006
    Inventors: Axel Preusse, Markus Keil, Wolfgang Buchholtz