Patents by Inventor Axel Tome

Axel Tome has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230310610
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt therof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Application
    Filed: February 27, 2023
    Publication date: October 5, 2023
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tome
  • Patent number: 11623007
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt therof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: April 11, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tome
  • Publication number: 20210008203
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt therof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Application
    Filed: September 25, 2020
    Publication date: January 14, 2021
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tome
  • Patent number: 10813998
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt thereof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: October 27, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tome
  • Publication number: 20190184014
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt thereof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 20, 2019
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tome
  • Patent number: 10265398
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt thereof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 23, 2019
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tomé
  • Publication number: 20170128572
    Abstract: Alkylphosphocholine analogs incorporating a chelating moiety that is chelated to gadolinium are disclosed herein. The alkylphophocholine analogs are compounds having the formula: or a salt thereof. R1 includes a chelating agent that is chelated to a gadolinium atom; a is 0 or 1; n is an integer from 12 to 30; m is 0 or 1; Y is —H, —OH, —COOH, —COOX, —OCOX, or —OX, wherein X is an alkyl or an arylalkyl; R2 is —N+H3, —N+H2Z, —N+HZ2, or —N+Z3, wherein each Z is independently an alkyl or an aroalkyl; and b is 1 or 2. The compounds can be used to detect solid tumors or to treat solid tumors. In detection/imaging applications, the gadolinium emits signals that are detectable using magnetic resonance imaging. In therapeutic treatment, the gadolinium emits tumor-targeting charged particles when exposed to epithermal neutrons.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 11, 2017
    Inventors: Jamey Weichert, Anatoly Pinchuk, Wolfgang Axel Tomé
  • Patent number: 9140306
    Abstract: The invention relates to a rotational movement damper (1) comprising an outer sleeve (2) and an axle which fits in the outer sleeve (2) and mounted to rotate in the outer sleeve. The axle comprises at least two discoidal flanges (7, 8, 17, 18) with flat flange surfaces (9, 10) and the same diameter, fitting in annular channels (12, 13, 14, 15) in the outer sleeve (2) such that the flanges contact with the planar flange surfaces (9, 10) thereof against the equally planar area on the counter surfaces of the annular channels (12, 13, 14, 15) unaffected by temperature variations and, on counter-rotation of the outer sleeve (2) and axle (3) act as a slipper clutch.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: September 22, 2015
    Assignee: Ejot GmbH & Co. KG
    Inventors: Rolf Kuenkel, Walter Kornsteiner, Reinhold Lenherr, Axel Tome
  • Patent number: 8897857
    Abstract: A method of producing a patient image indicating proton stopping power of the tissue may employ photon attenuation information converted to proton stopping power. The conversion uses different conversion functions for particular tissue types to account for a strong atomic number dependency in the conversion process. Megavoltage x-rays may be used for improved accuracy.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 25, 2014
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Wolfgang Axel Tomé, Dongxu Wang, Thomas R. Mackie
  • Patent number: 8545152
    Abstract: The invention relates to a screw which can be screwed into a component and which will resist further screwing into an internal thread within said component once a maximum torque has been reached. For this purpose, a screw body having an external thread is combined with a screw drive element which projects into a bore within said screw body and, within said bore, is connected to the screw body via static friction. At least part of this combination is made of a plastic material, with the static friction having the effect of a slipping clutch when a maximum torque acts on the screw drive element. The screw drive element is connected to the screw body via a ratchet in such a way that when the screw body is unscrewed from the internal thread within said component, turning said screw drive element will cause the ratchet to engage, thereby entraining the screw body.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: October 1, 2013
    Assignee: Ejot GmbH & Co., KG
    Inventors: Rolf Kuenkel, Walter Kornsteiner, Reinhold Lenherr, Axel Tome
  • Patent number: 8526692
    Abstract: Deformation maps (e.g. deformation vector fields) used for correcting image-type data used in the treatment of patients in radiotherapy may be processed to eliminate inverse inconsistency and transitivity type errors which produce different results depending on the order or path of the calculation of deformation. The correction permits registration of a treatment plan with the changing patient image and accumulation of dose to a common reference frame without transformation dependent artifacts.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 3, 2013
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Wolfgang Axel Tomé, Edward Thomas Bender, Nicholas Gordon Lance Hardcastle
  • Publication number: 20130108014
    Abstract: A method of producing a patient image indicating proton stopping power of the tissue may employ photon attenuation information converted to proton stopping power. The conversion uses different conversion functions for particular tissue types to account for a strong atomic number dependency in the conversion process. Megavoltage x-rays may be used for improved accuracy.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Inventors: Wolfgang Axel Tomé, Dongxu Wang, Thomas R. Mackie
  • Publication number: 20130004034
    Abstract: Deformation maps (e.g. deformation vector fields) used for correcting image-type data used in the treatment of patients in radiotherapy may be processed to eliminate inverse inconsistency and transitivity type errors which produce different results depending on the order or path of the calculation of deformation. The correction permits registration of a treatment plan with the changing patient image and accumulation of dose to a common reference frame without transformation dependent artifacts.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Inventors: Wolfgang Axel Tomé, Edward Thomas Bender, Nicholas Gordon Lance Hardcastle
  • Publication number: 20110236153
    Abstract: The invention relates to a screw which can be screwed into a component and which will resist further screwing into an internal thread within said component once a maximum torque has been reached. For this purpose, a screw body having an external thread is combined with a screw drive element which projects into a bore within said screw body and, within said bore, is connected to the screw body via static friction. At least part of this combination is made of a plastic material, with the static friction having the effect of a slipping clutch when a maximum torque acts on the screw drive element. The screw drive element is connected to the screw body via a ratchet in such a way that when the screw body is unscrewed from the internal thread within said component, turning said screw drive element will cause the ratchet to engage, thereby entraining the screw body.
    Type: Application
    Filed: September 22, 2009
    Publication date: September 29, 2011
    Applicant: EJOT GMBH & CO. KG
    Inventors: Rolf Kuenkel, Walter Kornsteiner, Reinhold Lenherr, Axel Tome
  • Patent number: 7551717
    Abstract: A virtual 4D treatment suite includes a dose calculation module, a gating module, and a dose rate adjustment module. The 4D treatment suite may be used to virtually analyze the impact the motion of a target tissue has on therapy for a particular patient and a proposed treatment plan. For example, for a proposed treatment plan, the dose calculation module may calculate a dose that would be received by a target tissue and an associated dose temporal variation based on an identified movement of the target tissue relative to at least a portion of a treatment field. Based on the calculated expected therapy dose and dose temporal variation, the gating module may determine whether to implement a gating technique for the proposed treatment plan and/or the dose rate adjustment module may determine whether to adjust the dose rate of the proposed treatment plan.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: June 23, 2009
    Assignees: Wisconsin Alumni Research Foundation, Koninklijke Philips Electronics NV
    Inventors: Wolfgang Axel Tomé, Eric Drew Ehler
  • Publication number: 20090052623
    Abstract: A virtual 4D treatment suite includes a dose calculation module, a gating module, and a dose rate adjustment module. The 4D treatment suite may be used to virtually analyze the impact the motion of a target tissue has on therapy for a particular patient and a proposed treatment plan. For example, for a proposed treatment plan, the dose calculation module may calculate a dose that would be received by a target tissue and an associated dose temporal variation based on an identified movement of the target tissue relative to at least a portion of a treatment field. Based on the calculated expected therapy dose and dose temporal variation, the gating module may determine whether to implement a gating technique for the proposed treatment plan and/or the dose rate adjustment module may determine whether to adjust the dose rate of the proposed treatment plan.
    Type: Application
    Filed: August 21, 2007
    Publication date: February 26, 2009
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Wolfgang Axel Tome, Eric Drew Ehler