Patents by Inventor Axel Wiegmann

Axel Wiegmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10866082
    Abstract: A method for adjusting a measuring device having an interferometer unit with an optical axis, an optical distance measuring device with a measuring axis and a support slide that is moveable along a slide axis. The measuring axis is first aligned parallel to the slide axis. An adjustment body with a first spherical reflection and/or diffraction surface and a retro reflector at the back side is arranged at the support slide. It is brought into a first confocal position, in which a first center point of the first spherical reflection/diffraction surface coincides with the focus of the spherical wavefront that is emitted from the interferometer unit. The retro reflector defines a vertex that is located close to the first center point, such that the measuring axis of the distance measuring device extends close to the focus of the emitted spherical wavefront. In doing so, Abbe-faults can be reduced or eliminated.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: December 15, 2020
    Assignee: Carl Mahr Holding GmbH
    Inventors: Axel Wiegmann, Markus Lotz
  • Publication number: 20190346250
    Abstract: A method for adjusting a measuring device having an interferometer unit with an optical axis, an optical distance measuring device with a measuring axis and a support slide that is moveable along a slide axis. The measuring axis is first aligned parallel to the slide axis. An adjustment body with a first spherical reflection and/or diffraction surface and a retro reflector at the back side is arranged at the support slide. It is brought into a first confocal position, in which a first center point of the first spherical reflection/diffraction surface coincides with the focus of the spherical wavefront that is emitted from the interferometer unit. The retro reflector defines a vertex that is located close to the first center point, such that the measuring axis of the distance measuring device extends close to the focus of the emitted spherical wavefront. In doing so, Abbe-faults can be reduced or eliminated.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 14, 2019
    Inventors: Axel Wiegmann, Markus Lotz
  • Patent number: 10239177
    Abstract: A metrological apparatus (15) is disposed for adjustment of an attitude of a workpiece (16) having an arcuate upper surface (17) relative to a rotary axis (C) of the metrological apparatus (15). The workpiece (16) is brought into a first rotary position (c1). A plurality of measured points within a measuring plane on the upper surface (17) is recorded. The workpiece (16) is moved into a further rotary position (c2) about the rotary axis (C), and again measured points in the measuring plane (E) on the upper surface (17) of the workpiece (16) are recorded. Based on these recorded measured points, the actual attitude (Li) of the workpiece (16) deviation from a specified target attitude (Ls) are determined. Adjustment parameters are determined, and an adjustment assembly (24) of the metrological apparatus (15) is activated as a function of the calculated adjustment parameters to adjust the workpiece (16).
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: March 26, 2019
    Assignee: Carl Mahr Holding GmbH
    Inventors: Axel Wiegmann, Stefan Mika, Ralf Kurch
  • Publication number: 20170348814
    Abstract: A metrological apparatus (15) is disposed for adjustment of an attitude of a workpiece (16) having an arcuate upper surface (17) relative to a rotary axis (C) of the metrological apparatus (15). The workpiece (16) is brought into a first rotary position (c1). A plurality of measured points within a measuring plane on the upper surface (17) is recorded. The workpiece (16) is moved into a further rotary position (c2) about the rotary axis (C), and again measured points in the measuring plane (E) on the upper surface (17) of the workpiece (16) are recorded. Based on these recorded measured points, the actual attitude (Li) of the workpiece (16) deviation from a specified target attitude (Ls) are determined. Adjustment parameters are determined, and an adjustment assembly (24) of the metrological apparatus (15) is activated as a function of the calculated adjustment parameters to adjust the workpiece (16).
    Type: Application
    Filed: June 7, 2017
    Publication date: December 7, 2017
    Inventors: Axel Wiegmann, Stefan Mika, Ralf Kurch