Patents by Inventor Aya Yamamoto

Aya Yamamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11520085
    Abstract: A transparent substrate having an antiglare function includes first and second faces. The transparent substrate has a resolution index value T, a reflected image diffusivity index value R, and a sparkle index value S satisfying T?0.25, R?0.8, and 0.75?S?0.95, respectively. The resolution index value T is calculated as (luminance of zero-degrees transmission light)/(luminance of total transmission light). The reflected image diffusivity index value R is calculated as (R2+R3)/(2×R1), where R1 denotes a luminance of reflected light reflected at first angle ?1, and R2, R3 denote luminance of reflected light at the second angle ?2, the third angle ?3, respectively, with respect to the first angle ?1. The sparkle index value S is calculated as 1?(Sa/Ss), where the first sparkle Sa and the second sparkle Ss denote a sparkle value of the transparent substrate and a sparkle value of a glass substrate, respectively.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: December 6, 2022
    Assignee: AGC Inc.
    Inventors: Aya Yamamoto, Yusuke Kobayashi, Yoshitaka Saijo
  • Patent number: 11462841
    Abstract: An antenna apparatus 1 includes: an anechoic box 50 having the internal space 51 that is not influenced by the surrounding radio wave environment; a plurality of antennas 6 that use radio signals in a plurality of divided frequency bands set in advance; a reflector 7 that is housed in the internal space and has a predetermined paraboloid of revolution, radio signals transmitted or received by an antenna 110 of a DUT 100 being reflected through the paraboloid of revolution; and antenna arrangement means 60 for sequentially arranging the plurality of receiving antennas 6 at a focal position F, which is determined from the paraboloid of revolution, according to the divided frequency bands.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: October 4, 2022
    Assignee: ANRITSU CORPORATION
    Inventors: Tomohiko Maruo, Aya Yamamoto
  • Patent number: 10784582
    Abstract: A circularly polarized antenna device, which is connectable to a wireless terminal measurement apparatus for performing measurements on a device under test (DUT) provided with an antenna on one surface of the DUT, includes a circularly polarized antenna and a holder. The circularly polarized antenna includes a dielectric substrate and a circularly polarized type of antenna element formed on a first surface of the dielectric substrate. The first surface is opposite to the one surface of the DUT. The circularly polarized antenna is spatially coupled to the antenna of the DUT. The holder holds the circularly polarized antenna and the DUT such that the one surface of the DUT and the dielectric substrate are not parallel to each other.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 22, 2020
    Assignee: ANRITSU CORPORATION
    Inventors: Yoshihiro Kuroiwa, Aya Yamamoto, Tomonori Morita
  • Patent number: 10763979
    Abstract: An measurement apparatus (antenna apparatus) 1 includes: an OTA chamber 50 having an internal space 51 that is not influenced by the surrounding radio wave environment; a reflector 7 that is housed in the internal space 51, radio signals transmitted or received by an antenna 110 of a DUT 100 being reflected through a paraboloid of revolution; a plurality of test antennas 6 that use radio signals in a plurality of measurement target frequency bands for measuring the transmission and reception characteristics of the DUT 100; and automatic antenna arrangement means 60 for sequentially arranging each of the test antennas 6 at a focal position F, which is determined from the paraboloid of revolution, according to the measurement target frequency bands.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: September 1, 2020
    Assignee: ANRITSU CORPORATION
    Inventors: Tomohiko Maruo, Aya Yamamoto
  • Publication number: 20200177289
    Abstract: An measurement apparatus (antenna apparatus) 1 includes: an OTA chamber 50 having an internal space 51 that is not influenced by the surrounding radio wave environment; a reflector 7 that is housed in the internal space 51, radio signals transmitted or received by an antenna 110 of a DUT 100 being reflected through a paraboloid of revolution; a plurality of test antennas 6 that use radio signals in a plurality of measurement target frequency bands for measuring the transmission and reception characteristics of the DUT 100; and automatic antenna arrangement means 60 for sequentially arranging each of the test antennas 6 at a focal position F, which is determined from the paraboloid of revolution, according to the measurement target frequency bands.
    Type: Application
    Filed: October 2, 2019
    Publication date: June 4, 2020
    Inventors: Tomohiko MARUO, Aya YAMAMOTO
  • Publication number: 20200119460
    Abstract: An antenna apparatus 1 includes: an anechoic box 50 having the internal space 51 that is not influenced by the surrounding radio wave environment; a plurality of antennas 6 that use radio signals in a plurality of divided frequency bands set in advance; a reflector 7 that is housed in the internal space and has a predetermined paraboloid of revolution, radio signals transmitted or received by an antenna 110 of a DUT 100 being reflected through the paraboloid of revolution; and antenna arrangement means 60 for sequentially arranging the plurality of receiving antennas 6 at a focal position F, which is determined from the paraboloid of revolution, according to the divided frequency bands.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 16, 2020
    Inventors: Tomohiko MARUO, Aya YAMAMOTO
  • Publication number: 20200096681
    Abstract: A transparent substrate having an antiglare function includes first and second faces. The transparent substrate has a resolution index value T, a reflected image diffusivity index value R, and a sparkle index value S satisfying T?0.25, R?0.8, and 0.75?S?0.95, respectively. The resolution index value T is calculated as (luminance of zero-degrees transmission light)/(luminance of total transmission light). The reflected image diffusivity index value R is calculated as (R2+R3)/(2×R1), where R1 denotes a luminance of reflected light reflected at first angle ?1, and R2, R3 denote luminance of reflected light at the second angle ?2, the third angle ?3, respectively, with respect to the first angle ?1. The sparkle index value S is calculated as 1?(Sa/Ss), where the first sparkle Sa and the second sparkle Ss denote a sparkle value of the transparent substrate and a sparkle value of a glass substrate, respectively.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 26, 2020
    Applicant: AGC Inc.
    Inventors: Aya YAMAMOTO, Yusuke Kobayashi, Yoshitaka Saijo
  • Patent number: 10553373
    Abstract: A power switching control device includes a voltage measurement unit to measure a power-source-side voltage of a circuit breaker and a load-side voltage of the circuit breaker, an inter-pole-voltage estimation unit to estimate a future inter-pole voltage from a value of the power-source-side voltage and a value of the load-side voltage, a target closing-clock-time determination unit to set a target activation point of the circuit breaker on a waveform of an absolute value of the future inter-pole voltage, set an inter-pole withstand-voltage characteristic line calculated from a rate of decrease of dielectric strength, so that the inter-pole withstand-voltage characteristic line passes through the target activation point, and determine a clock time when the inter-pole withstand-voltage characteristic line becomes zero as a target closing clock time of the circuit breaker, and a closing control unit to close the circuit breaker at the target closing clock time.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: February 4, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tomohito Mori, Aya Yamamoto, Daisuke Yoshida
  • Patent number: 10490366
    Abstract: A power switching control device includes a unit to measure a power-supply-side voltage of a circuit breaker, a unit to calculate a current that flows through a resistor after a switch is turned on and before a circuit breaking unit is turned on, and to calculate an interelectrode voltage of the circuit breaking unit after the switch is turned on and before the circuit breaking unit is turned on, a unit to determine a target closing time point for the circuit breaking unit so that a target turn-on phase for the circuit breaking unit becomes a phase that is set in accordance with the capacitor, and to output a control signal such that the circuit breaking unit is closed at the target closing time point.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: November 26, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tomohito Mori, Aya Yamamoto, Daisuke Yoshida
  • Patent number: 10439280
    Abstract: A distance between a center of a first probe antenna and a center of a second probe antenna in a measurement plane is longer than a distance between the center of the first probe antenna and a center of a third probe antenna in the measurement plane by a distance between two measurement positions adjacent to each other in a horizontal direction. A distance between a center of a fourth probe antenna and a center of a fifth probe antenna in the measurement plane is longer than a distance between the center of the fourth probe antenna and a center of a sixth probe antenna in the measurement plane by a distance between two measurement positions adjacent to each other in a vertical direction.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 8, 2019
    Assignee: ANRITSU CORPORATION
    Inventors: Takashi Kawamura, Aya Yamamoto, Shigenori Mattori
  • Patent number: 10424912
    Abstract: The present invention provides a phase control device applied to a three-phase circuit including a three-phase transformer and a three-phase breaker that turns on/off the transformer. The device suppresses an excitation rush current generated in the transformer. The device includes a controller that closes any one phase of the breaker as a closing first phase and subsequently closes the other phases, a determiner that determines the closing first phase based on residual magnetic fluxes of the respective phases in the transformer, a determiner that determines, based on a pre-arc characteristic and a closing time variation characteristic of the breaker, target closing phases and target closing times of the closing first phase and the other phases, a calculator that calculates a closing time of each phase of the breaker, and an operation time table that stores, as a median of the variation characteristic represented by a normal distribution, the calculated time.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: September 24, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Aya Yamamoto, Tomohito Mori
  • Publication number: 20190221938
    Abstract: A circularly polarized antenna device, which is connectable to a wireless terminal measurement apparatus for performing measurements on a device under test (DUT) provided with an antenna on one surface of the DUT, includes a circularly polarized antenna and a holder. The circularly polarized antenna includes a dielectric substrate and a circularly polarized type of antenna element formed on a first surface of the dielectric substrate. The first surface is opposite to the one surface of the DUT. The circularly polarized antenna is spatially coupled to the antenna of the DUT. The holder holds the circularly polarized antenna and the DUT such that the one surface of the DUT and the dielectric substrate are not parallel to each other.
    Type: Application
    Filed: July 25, 2018
    Publication date: July 18, 2019
    Inventors: Yoshihiro Kuroiwa, Aya Yamamoto, Tomonori Morita
  • Patent number: 10302735
    Abstract: A directional characteristic acquisition unit 51 rotates a wireless terminal 1 that is a measurement target using a terminal holding rotation mechanism 30 centering around a standard point O, measures a field intensity Pr of a radio wave received by the measurement antenna 21 at each rotation angle (?, ?) to calculate a virtual directional characteristic of a terminal antenna 1a in the wireless terminal 1. An error information output unit 60 calculates a reception angle error (??, ??), a propagation loss error E1, and a gain error E2 that occur in accordance with rotation of the wireless terminal 1, and corrects a virtual directional characteristic using these errors, using a correction unit 70, to calculate a directional characteristic Hc in a case where it is assumed that the terminal antenna 1a of the wireless terminal 1 is rotated at the position of the standard point O.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: May 28, 2019
    Assignee: ANRITSU CORPORATION
    Inventors: Tomonori Morita, Aya Yamamoto
  • Patent number: 10250342
    Abstract: In a measuring system in which a wireless terminal that is a measurement target is rotated centering around the standard point O at each rotation angle of the wireless terminal, and thus a reception performance is acquired, when the reception performance is obtained, a power of a measurement signal that is supplied to the measurement antenna is corrected for a propagation loss error and a gain error that occur in association with rotation of the wireless terminal, angle correction for an angle error that occurs in association with the rotation of the wireless terminal is performed on the reception performance at each rotation angle, which is acquired with the measure signal having the corrected power, and thus the reception performance in a case where it is assumed that a terminal antenna of the wireless terminal is rotated at a position of a standard points is obtained.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: April 2, 2019
    Assignee: ANRITSU CORPORATION
    Inventors: Tomonori Morita, Aya Yamamoto
  • Patent number: 10224165
    Abstract: A circuit breaker characteristic monitoring device monitors the operation of a circuit breaker to estimate the amount of consumption of a movable contact and fixed contacts included in the circuit breaker. The device includes an operating time measurement unit to measure at least one of closing time, which is the time required for the circuit breaker to be closed after starting a closing operation, and opening time, which is the time required for the circuit breaker to be open after starting an opening operation, and a contact consumption amount estimation unit to estimate the amount of consumption of the movable contact and the fixed contacts on the basis of the result of measurement performed by the operating time measurement unit and travel speed of the movable contact during the closing operation or the opening operation for which the measurement result is obtained.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: March 5, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Shuichi Tanigaki, Tomohito Mori, Aya Yamamoto
  • Publication number: 20190044628
    Abstract: In a measuring system in which a wireless terminal that is a measurement target is rotated centering around the standard point O at each rotation angle of the wireless terminal, and thus a reception performance is acquired, when the reception performance is obtained, a power of a measurement signal that is supplied to the measurement antenna is corrected for a propagation loss error and a gain error that occur in association with rotation of the wireless terminal, angle correction for an angle error that occurs in association with the rotation of the wireless terminal is performed on the reception performance at each rotation angle, which is acquired with the measure signal having the corrected power, and thus the reception performance in a case where it is assumed that a terminal antenna of the wireless terminal is rotated at a position of a standard points is obtained.
    Type: Application
    Filed: July 30, 2018
    Publication date: February 7, 2019
    Inventors: Tomonori MORITA, Aya YAMAMOTO
  • Patent number: 10177553
    Abstract: A power switching control apparatus includes a current measurement unit that measures the current of a main circuit; a current estimation unit that detects a fault current on the basis of a current measurement value and estimates a future current waveform on the basis of a current waveform measured in a given duration after the detection; a target opening time determination unit that uses a current zero point obtained from the estimated current waveform, a predicted opening time, and a given minimum arc duration so as to determine a time by subtracting a sum of the opening time and the minimum arc duration from the current zero point as the target opening time; and an opening control unit that waits until the nearest one of the target opening times is reached and transmits an interruption control signal when the target opening time is reached.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: January 8, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tomohito Mori, Aya Yamamoto, Daisuke Yoshida
  • Publication number: 20180358189
    Abstract: A power switching control device includes a unit to measure a power-supply-side voltage of a circuit breaker, a unit to calculate a current that flows through a resistor after a switch is turned on and before a circuit breaking unit is turned on, and to calculate an interelectrode voltage of the circuit breaking unit after the switch is turned on and before the circuit breaking unit is turned on, a unit to determine a target closing time point for the circuit breaking unit so that a target turn-on phase for the circuit breaking unit becomes a phase that is set in accordance with the capacitor, and to output a control signal such that the circuit breaking unit is closed at the target closing time point.
    Type: Application
    Filed: December 9, 2015
    Publication date: December 13, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tomohito MORI, Aya YAMAMOTO, Daisuke YOSHIDA
  • Publication number: 20180329017
    Abstract: A directional characteristic acquisition unit 51 rotates a wireless terminal 1 that is a measurement target using a terminal holding rotation mechanism 30 centering around a standard point O, measures a field intensity Pr of a radio wave received by the measurement antenna 21 at each rotation angle (?, ?) to calculate a virtual directional characteristic of a terminal antenna 1a in the wireless terminal 1. An error information output unit 60 calculates a reception angle error (??, ??), a propagation loss error E1, and a gain error E2 that occur in accordance with rotation of the wireless terminal 1, and corrects a virtual directional characteristic using these errors, using a correction unit 70, to calculate a directional characteristic Hc in a case where it is assumed that the terminal antenna 1a of the wireless terminal 1 is rotated at the position of the standard point O.
    Type: Application
    Filed: April 19, 2018
    Publication date: November 15, 2018
    Inventors: Tomonori MORITA, Aya YAMAMOTO
  • Patent number: 10018664
    Abstract: A phase control device includes a connection error detection unit. The connection error detection unit includes a phase sequence detection unit that detects a phase sequence of voltage signals, a phase sequence detection unit that detects a phase sequence of current signals, a collation unit that collates the phase sequence of the voltage signals and the phase sequence of the current signals and determines that a connection error is present when the phase sequences are different, phase difference detection units that detect a phase difference between the voltage signal and the current signal, and a phase difference determination unit that determines, when the phase differences output from the phase difference detection units fall without a determination range, that a connection error is present.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: July 10, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Aya Yamamoto, Tomohito Mori, Daigo Matsumoto