Patents by Inventor Ayaskant Pani

Ayaskant Pani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230388222
    Abstract: A network system for a data center is described in which an access node sprays a data flow of packets over a logical tunnel to another access node. In one example, a method comprises establishing, by a plurality of access nodes, a logical tunnel over a plurality of data paths across a switch fabric between a source access node and a destination access node included within the plurality of access nodes, wherein the source access node is coupled to a source network device; and spraying, by the source access node, a data flow of packets over the logical tunnel to the destination access node, wherein the source access node receives the data flow of packets from the source network device, and wherein spraying the data flow of packets includes directing each of the packets within the data flow to a least loaded data path.
    Type: Application
    Filed: August 9, 2023
    Publication date: November 30, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Pradeep Sindhu, Deepak Goel, Jean-Marc Frailong, Srihari Raju Vegesna, Wael Noureddine, Philip A. Thomas, Satish Deo, Sunil Mekad, Ayaskant Pani
  • Patent number: 11803448
    Abstract: Various embodiments of systems and methods for faster restart of task nodes using periodic checkpointing for data sources are described. A task node obtains data from data sources in order to perform one or more tasks. The task node checkpoints data source progress points for each of its data sources, whether active or inactive, into a common checkpoint data structure at least once every time interval. Multiple task nodes checkpoint their data source progress points into the same common checkpoint data structure. After restart, the task node determines where to resume obtaining data from its data sources by determining a limited portion of the common checkpoint data structure based on the time interval, analyzing only the limited portion of the common checkpoint data structure, retrieving the data source progress points for each of its data sources, and resuming obtaining data from the data sources to perform tasks.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: October 31, 2023
    Assignee: Amazon Technologies, Inc.
    Inventors: Ayaskant Pani, Matias Guido Tencer
  • Patent number: 11777839
    Abstract: A network system for a data center is described in which an access node sprays a data flow of packets over a logical tunnel to another access node. In one example, a method comprises establishing, by a plurality of access nodes, a logical tunnel over a plurality of data paths across a switch fabric between a source access node and a destination access node included within the plurality of access nodes, wherein the source access node is coupled to a source network device; and spraying, by the source access node, a data flow of packets over the logical tunnel to the destination access node, wherein the source access node receives the data flow of packets from the source network device, and wherein spraying the data flow of packets includes directing each of the packets within the data flow to a least loaded data path.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: October 3, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Pradeep Sindhu, Deepak Goel, Jean-Marc Frailong, Srihari Raju Vegesna, Wael Noureddine, Philip A. Thomas, Satish Deo, Sunil Mekad, Ayaskant Pani
  • Publication number: 20230231799
    Abstract: A network system for a data center. In one example, a method comprises establishing, by a plurality of access nodes, a logical tunnel over a plurality of data paths across a switch fabric between a source access node and a destination access node included within the plurality of access nodes, wherein the source access node is coupled to a source network device; and spraying, by the source access node, a data flow of packets over the logical tunnel to the destination access node, wherein the source access node receives the data flow of packets from the source network device, and wherein spraying the data flow of packets includes directing each of the packets within the data flow to one of the data paths based on an amount of data previously transmitted on each of the plurality of data paths.
    Type: Application
    Filed: February 24, 2023
    Publication date: July 20, 2023
    Inventors: Pradeep Sindhu, Deepak Goel, Jean-Marc Frailong, Srihari Raju Vegesna, Wael Noureddine, Philip A. Thomas, Satish D Deo, Sunil Mekad, Ayaskant Pani
  • Publication number: 20230208748
    Abstract: Techniques for detecting path failures and reducing packet loss as a result of such failures are described for use within a data center or other environment. For example, a source and/or destination access node may create and/or maintain information about health and/or connectivity for a plurality of ports or paths between the source and destination device and core switches. The source access node may spray packets over a number of paths between the source access node and the destination access node. The source access node may use the information about connectivity for the paths between the source or destination access nodes and the core switches to limit the paths over which packets are sprayed. The source access node may spray packets over paths between the source access node and the destination access node that are identified as healthy, while avoiding paths that have been identified as failed.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Deepak Goel, Pradeep Sindhu, Ayaskant Pani, Srihari Raju Vegesna, Narendra Jayawant Gathoo, John David Huber, Rohit Sunkam Ramanujam, Saurin Patel
  • Patent number: 11625154
    Abstract: Systems, methods, and non-transitory computer-readable storage media for stage upgrades in a network. The system generates graph-data structured based representations of devices in the network, wherein respective attributes of the representations is selected based on respective services provided by the devices to tenants in the network and identities of respective tenants serviced by the devices. Next, the system generates a graph showing a distribution of the devices in the network according to the representations, wherein the representations are interconnected in the graph based on service roles of associated devices with respect to tenants in the network and other devices associated with the tenants. The system then schedules an upgrade of devices based on the graph, the upgrade being scheduled in stages, each stage including devices selected for upgrade in that stage, wherein the devices for each stage are selected by identifying devices having respective representations assigned to that specific stage.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: April 11, 2023
    Assignee: Cisco Technology, Inc.
    Inventor: Ayaskant Pani
  • Patent number: 11601359
    Abstract: Techniques for detecting path failures and reducing packet loss as a result of such failures are described for use within a data center or other environment. For example, a source and/or destination access node may create and/or maintain information about health and/or connectivity for a plurality of ports or paths between the source and destination device and core switches. The source access node may spray packets over a number of paths between the source access node and the destination access node. The source access node may use the information about connectivity for the paths between the source or destination access nodes and the core switches to limit the paths over which packets are sprayed. The source access node may spray packets over paths between the source access node and the destination access node that are identified as healthy, while avoiding paths that have been identified as failed.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 7, 2023
    Assignee: FUNGIBLE, INC.
    Inventors: Deepak Goel, Pradeep Sindhu, Ayaskant Pani, Srihari Raju Vegesna, Narendra Jayawant Gathoo, John David Huber, Rohit Sunkam Ramanujam, Saurin Patel
  • Patent number: 11469922
    Abstract: A network system for a data center is described in which a switch fabric provides interconnectivity such that any servers may communicate packet data to any other of the servers using any of a number of parallel data paths. Moreover, according to the techniques described herein, edge-positioned access nodes, permutation devices and core switches of the switch fabric may be configured and arranged in a way such that the parallel data paths provide single L2/L3 hop, full mesh interconnections between any pairwise combination of the access nodes, even in massive data centers having tens of thousands of servers. The access nodes may be arranged within access node groups, and permutation devices may be used within the access node groups to spray packets across the access node groups prior to injection within the switch fabric, thereby increasing the fanout and scalability of the network system.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 11, 2022
    Assignee: FUNGIBLE, INC.
    Inventors: Deepak Goel, Pradeep Sindhu, Srihari Raju Vegesna, Robert William Bowdidge, Ayaskant Pani
  • Patent number: 11412076
    Abstract: Network access node virtual fabrics configured dynamically over an underlay network are described. A centralized controller, such as a software-defined networking (SDN) controller, of a packet switched network is configured to establish one or more virtual fabrics as overlay networks on top of the physical underlay network of the packet switched network. For example, the SDN controller may define multiple sets of two of more access nodes connected to the packet switched network, and the access nodes of a given one of the sets may use a new data transmission protocol, referred to generally herein as a fabric control protocol (FCP), to dynamically setup tunnels as a virtual fabric over the packet switched network. The FCP tunnels may include all or a subset of the parallel data paths through the packet switched network between the access nodes for a given virtual fabric.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: August 9, 2022
    Assignee: FUNGIBLE, INC.
    Inventors: Deepak Goel, Narendra Jayawant Gathoo, Philip A. Thomas, Srihari Raju Vegesna, Pradeep Sindhu, Wael Noureddine, Robert William Bowdidge, Ayaskant Pani, Gopesh Goyal
  • Publication number: 20220103661
    Abstract: A fabric control protocol is described for use within a data center in which a switch fabric provides full mesh interconnectivity such that any of the servers may communicate packet data for a given packet flow to any other of the servers using any of a number of parallel data paths within the data center switch fabric. The fabric control protocol enables spraying of individual packets for a given packet flow across some or all of the multiple parallel data paths in the data center switch fabric and, optionally, reordering of the packets for delivery to the destination. The fabric control protocol may provide end-to-end bandwidth scaling and flow fairness within a single tunnel based on endpoint-controlled requests and grants for flows. In some examples, the fabric control protocol packet structure is carried over an underlying protocol, such as the User Datagram Protocol (UDP).
    Type: Application
    Filed: November 12, 2021
    Publication date: March 31, 2022
    Inventors: Deepak Goel, Narendra Jayawant Gathoo, Philip A. Thomas, Srihari Raju Vegesna, Pradeep Sindhu, Wael Noureddine, Robert William Bowdidge, Ayaskant Pani, Gopesh Goyal
  • Patent number: 11178262
    Abstract: A fabric control protocol is described for use within a data center in which a switch fabric provides full mesh interconnectivity such that any of the servers may communicate packet data for a given packet flow to any other of the servers using any of a number of parallel data paths within the data center switch fabric. The fabric control protocol enables spraying of individual packets for a given packet flow across some or all of the multiple parallel data paths in the data center switch fabric and, optionally, reordering of the packets for delivery to the destination. The fabric control protocol may provide end-to-end bandwidth scaling and flow fairness within a single tunnel based on endpoint-controlled requests and grants for flows. In some examples, the fabric control protocol packet structure is carried over an underlying protocol, such as the User Datagram Protocol (UDP).
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 16, 2021
    Assignee: Fungible, Inc.
    Inventors: Deepak Goel, Narendra Jayawant Gathoo, Phillip A. Thomas, Srihari Raju Vegesna, Pradeep Sindhu, Wael Noureddine, Robert William Bowdidge, Ayaskant Pani, Gopesh Goyal
  • Publication number: 20210320820
    Abstract: A fabric control protocol (FCP) and packet forwarding mechanisms are described that maximize utilization of bandwidth within massive, large-scale data centers having multi-stage data center switch fabric topologies, such as topologies that include a third switching layer formed by super spine switches. Automatic generation of data plane forwarding information referred to as FCP path information enumerates, for each data processing unit (DPU), the available FCP paths. The FCP path information may be based on unique combinations of peak points of the switch fabric for a given DPU with FCP colors assigned to network links that are used to multi-home the DPU to the switch fabric.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: Yixing Ruan, Deepak Goel, Narendra Jayawant Gathoo, Philip A. Thomas, Srihari Raju Vegesna, Pradeep Sindhu, Wael Noureddine, Robert William Bowdidge, Ayaskant Pani, Gopesh Goyal
  • Publication number: 20210218665
    Abstract: Techniques for detecting path failures and reducing packet loss as a result of such failures are described for use within a data center or other environment. For example, a source and/or destination access node may create and/or maintain information about health and/or connectivity for a plurality of ports or paths between the source and destination device and core switches. The source access node may spray packets over a number of paths between the source access node and the destination access node. The source access node may use the information about connectivity for the paths between the source or destination access nodes and the core switches to limit the paths over which packets are sprayed. The source access node may spray packets over paths between the source access node and the destination access node that are identified as healthy, while avoiding paths that have been identified as failed.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Inventors: Deepak Goel, Pradeep Sindhu, Ayaskant Pani, Srihari Raju Vegesna, Narendra Jayawant Gathoo, John David Huber, Rohit Sunkam Ramanujam, Saurin Patel
  • Publication number: 20210176347
    Abstract: Network access node virtual fabrics configured dynamically over an underlay network are described. A centralized controller, such as a software-defined networking (SDN) controller, of a packet switched network is configured to establish one or more virtual fabrics as overlay networks on top of the physical underlay network of the packet switched network. For example, the SDN controller may define multiple sets of two of more access nodes connected to the packet switched network, and the access nodes of a given one of the sets may use a new data transmission protocol, referred to generally herein as a fabric control protocol (FCP), to dynamically setup tunnels as a virtual fabric over the packet switched network. The FCP tunnels may include all or a subset of the parallel data paths through the packet switched network between the access nodes for a given virtual fabric.
    Type: Application
    Filed: January 21, 2021
    Publication date: June 10, 2021
    Inventors: Deepak Goel, Narendra Jayawant Gathoo, Philip A. Thomas, Srihari Raju Vegesna, Pradeep Sindhu, Wael Noureddine, Robert William Bowdidge, Ayaskant Pani, Gopesh Goyal
  • Patent number: 10965586
    Abstract: Techniques for detecting path failures and reducing packet loss as a result of such failures are described for use within a data center or other environment. For example, a source and/or destination access node may create and/or maintain information about health and/or connectivity for a plurality of ports or paths between the source and destination device and core switches. The source access node may spray packets over a number of paths between the source access node and the destination access node. The source access node may use the information about connectivity for the paths between the source or destination access nodes and the core switches to limit the paths over which packets are sprayed. The source access node may spray packets over paths between the source access node and the destination access node that are identified as healthy, while avoiding paths that have been identified as failed.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: March 30, 2021
    Assignee: Fungible, Inc.
    Inventors: Deepak Goel, Pradeep Sindhu, Ayaskant Pani, Srihari Raju Vegesna, Narendra Jayawant Gathoo, John David Huber, Rohit Sunkam Ramanujam, Saurin Patel
  • Patent number: 10904367
    Abstract: Network access node virtual fabrics configured dynamically over an underlay network are described. A centralized controller, such as a software-defined networking (SDN) controller, of a packet switched network is configured to establish one or more virtual fabrics as overlay networks on top of the physical underlay network of the packet switched network. For example, the SDN controller may define multiple sets of two of more access nodes connected to the packet switched network, and the access nodes of a given one of the sets may use a new data transmission protocol, referred to generally herein as a fabric control protocol (FCP), to dynamically setup tunnels as a virtual fabric over the packet switched network. The FCP tunnels may include all or a subset of the parallel data paths through the packet switched network between the access nodes for a given virtual fabric.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 26, 2021
    Assignee: Fungible, Inc.
    Inventors: Deepak Goel, Narendra Jayawant Gathoo, Phillip A. Thomas, Srihari Raju Vegesna, Pradeep Sindhu, Wael Noureddine, Robert William Bowdidge, Ayaskant Pani, Gopesh Goyal
  • Patent number: 10819563
    Abstract: Systems, methods, and non-transitory computer-readable storage media for recovering from a partial failure of a virtual port chain (vPC) domain. The first and second vPC peers may be paired to create a vPC having a virtual address. An endpoint host may communicate with a network via the virtual port channel. The system may detect that the first virtual port channel peer is down. During or after the first vPC reboots, the reachability cost for the first vPC with regards to the virtual address can be set to an inflated value. The first vPC peer may also delay its bring up time while it synchronizes its vPC state information with the second vPC peer. The second vPC can continue to advertise the association between the endpoint host and the virtual address. Upon completion of the synchronization, the first vPC peer may bring up the link and restore the reachability cost.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: October 27, 2020
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Ayaskant Pani, Saurabh Agarwal, Srinivas Tatikonda, Sarat Kamisetty
  • Publication number: 20200314026
    Abstract: A network system for a data center is described in which an access node sprays a data flow of packets over a logical tunnel to another access node. In one example, a method comprises establishing, by a plurality of access nodes, a logical tunnel over a plurality of data paths across a switch fabric between a source access node and a destination access node included within the plurality of access nodes, wherein the source access node is coupled to a source network device; and spraying, by the source access node, a data flow of packets over the logical tunnel to the destination access node, wherein the source access node receives the data flow of packets from the source network device, and wherein spraying the data flow of packets includes directing each of the packets within the data flow to a least loaded data path.
    Type: Application
    Filed: June 15, 2020
    Publication date: October 1, 2020
    Inventors: Pradeep Sindhu, Deepak Goel, Jean-Marc Frailong, Srihari Raju Vegesna, Wael Noureddine, Philip A. Thomas, Satish D Deo, Sunil Mekad, Ayaskant Pani
  • Publication number: 20200293180
    Abstract: Systems, methods, and non-transitory computer-readable storage media for stage upgrades in a network. The system generates graph-data structured based representations of devices in the network, wherein respective attributes of the representations is selected based on respective services provided by the devices to tenants in the network and identities of respective tenants serviced by the devices. Next, the system generates a graph showing a distribution of the devices in the network according to the representations, wherein the representations are interconnected in the graph based on service roles of associated devices with respect to tenants in the network and other devices associated with the tenants. The system then schedules an upgrade of devices based on the graph, the upgrade being scheduled in stages, each stage including devices selected for upgrade in that stage, wherein the devices for each stage are selected by identifying devices having respective representations assigned to that specific stage.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 17, 2020
    Inventor: Ayaskant Pani
  • Publication number: 20200259682
    Abstract: A network system for a data center is described in which a switch fabric provides interconnectivity such that any servers may communicate packet data to any other of the servers using any of a number of parallel data paths. Moreover, according to the techniques described herein, edge-positioned access nodes, permutation devices and core switches of the switch fabric may be configured and arranged in a way such that the parallel data paths provide single L2/L3 hop, full mesh interconnections between any pairwise combination of the access nodes, even in massive data centers having tens of thousands of servers. The access nodes may be arranged within access node groups, and permutation devices may be used within the access node groups to spray packets across the access node groups prior to injection within the switch fabric, thereby increasing the fanout and scalability of the network system.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: Deepak Goel, Pradeep Sindhu, Srihari Raju Vegesna, Robert William Bowdidge, Ayaskant Pani