Patents by Inventor Azhar Ilyas

Azhar Ilyas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11642849
    Abstract: Bio-Inks and methods of using compositions comprising the bio-Inks are disclosed. 3-D tissue repair and regeneration through precise and specific formation of biodegradable tissue scaffolds in a tissue site using the bio-inks are also provided. Specific methylacrylated gelatin hydrogels (MAC) and methacrylated chitosan (MACh) preparations formulated with sucrose, a silicate-containing component (such as laponite), and/or a cross-linking agent (such as a photo-initiator or chemical initiator), as well as powdered preparations of these, are also disclosed. Kits containing these preparations are provided for point-of-care tissue repair in vivo. Superior, more complete (up to 99.85% tissue regeneration within 4 weeks applied in situ), and rapid in situ tissue repair and bone formation are also demonstrated.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 9, 2023
    Assignees: The Texas A&M University System, The Board of Regents, The University of Texas System
    Inventors: Venu G. Varanasi, Azhar Ilyas, Philip Roger Kramer, Taha Azimaie, Pranesh B. Aswath, Tugba Cebe
  • Patent number: 10828393
    Abstract: Disclosed are compositions, methods and processes for fabricating and using a device or other implement including a surface or surfaces having a nanoscale or microscale layer or coating of Si—O—N—P. These coatings and/or layers may be continuous, on the surface or discontinuous (e.g., patterned, grooved), and may be provided on silica surfaces, metal (e.g., titanium), ceramic, and combination/hybrid materials. Methods of producing an implantable device, such as a load-bearing or non-load-bearing device, such as a bone or other structural implant device (load-bearing), are also presented. Craniofacial, osteogenic and disordered bone regeneration (osteoporosis) uses and applications of devices that include at least one surface that is treated to include a nanoscale or microscale layer or coating of Si—O—N—P are also provided. Methods of using the treated and/or coated devices to enhance enhanced vascularization and healing at a treated surface of a device in vivo, is also presented.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: November 10, 2020
    Assignees: The Texas A&M University System, Board of Regents, The University of Texas System
    Inventors: Venu Varanasi, Pranesh Aswath, Philip Kramer, Megen Velten, Azhar Ilyas
  • Publication number: 20200055302
    Abstract: Bio-Inks and methods of using compositions comprising the bio-Inks are disclosed. 3-D tissue repair and regeneration through precise and specific formation of biodegradable tissue scaffolds in a tissue site using the bio-inks are also provided. Specific methylacrylated gelatin hydrogels (MAC) and methacrylated chitosan (MACh) preparations formulated with sucrose, a silicate-containing component (such as laponite), and/or a cross-linking agent (such as a photo-initiator or chemical initiator), as well as powdered preparations of these, are also disclosed. Kits containing these preparations are provided for point-of-care tissue repair in vivo. Superior, more complete (up to 99.85% tissue regeneration within 4 weeks applied in situ), and rapid in situ tissue repair and bone formation are also demonstrated.
    Type: Application
    Filed: July 30, 2019
    Publication date: February 20, 2020
    Inventors: Venu G. Varanasi, Azhar Ilyas, Philip Roger Kramer, Taha Azimaie, Pranesh B. Aswath, Tugba Cebe
  • Patent number: 10442182
    Abstract: Bio-Inks and methods of using compositions comprising the bio-Inks are disclosed. 3-D tissue repair and regeneration through precise and specific formation of biodegradable tissue scaffolds in a tissue site using the bio-inks are also provided. Specific methylacrylated gelatin hydrogels (MAC) and methacrylated chitosan (MACh) preparations formulated with sucrose, a silicate-containing component (such as laponite), and/or a cross-linking agent (such as a photo-initiator or chemical initiator), as well as powdered preparations of these, are also disclosed. Kits containing these preparations are provided for point-of-care tissue repair in vivo. Superior, more complete (up to 99.85% tissue regeneration within 4 weeks applied in situ), and rapid in situ tissue repair and bone formation are also demonstrated.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: October 15, 2019
    Assignees: The Texas A&M University System, The Board of Regents, The University of Texas System
    Inventors: Venu G. Varanasi, Azhar Ilyas, Philip Roger Kramer, Taha Azimaie, Pranesh B. Aswath, Tugba Cebe
  • Publication number: 20170348459
    Abstract: Disclosed are compositions, methods and processes for fabricating and using a device or other implement including a surface or surfaces having a nanoscale or microscale layer or coating of Si—O—N—P. These coatings and/or layers may be continuous, on the surface or discontinuous (e.g., patterned, grooved), and may be provided on silica surfaces, metal (e.g., titanium), ceramic, and combination/hybrid materials. Methods of producing an implantable device, such as a load-bearing or non-load-bearing device, such as a bone or other structural implant device (load-bearing), are also presented. Craniofacial, osteogenic and disordered bone regeneration (osteoporosis) uses and applications of devices that include at least one surface that is treated to include a nanoscale or microscale layer or coating of Si—O—N—P are also provided. Methods of using the treated and/or coated devices to enhance enhanced vascularization and healing at a treated surface of a device in vivo, is also presented.
    Type: Application
    Filed: March 9, 2017
    Publication date: December 7, 2017
    Inventors: Venu Varanasi, Pranesh Aswath, Philip Kramer, Megen Velten, Azhar Ilyas
  • Publication number: 20170143831
    Abstract: Bio-Inks and methods of using compositions comprising the bio-Inks are disclosed. 3-D tissue repair and regeneration through precise and specific formation of biodegradable tissue scaffolds in a tissue site using the bio-inks are also provided. Specific methylacrylated gelatin hydrogels (MAC) and methacrylated chitosan (MACh) preparations formulated with sucrose, a silicate-containing component (such as laponite), and/or a cross-linking agent (such as a photo-initiator or chemical initiator), as well as powdered preparations of these, are also disclosed. Kits containing these preparations are provided for point-of-care tissue repair in vivo. Superior, more complete (up to 99.85% tissue regeneration within 4 weeks applied in situ), and rapid in situ tissue repair and bone formation are also demonstrated.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Inventors: Venu G. Varanasi, Azhar Ilyas, Philip Roger Kramer, Taha Azimaie