Patents by Inventor B. Kwak

B. Kwak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11942576
    Abstract: A photocurable composition includes a blue photoluminescent material, one or more monomers, and a photoinitiator that initiates polymerization of the one or more monomers in response to absorption of the ultraviolet light. The blue photoluminescent material is selected to absorb ultraviolet light with a maximum wavelength in a range of about 300 nm to about 430 nm and to emit blue light. The blue photoluminescent material also has an emission peak in a range of about 420 nm to about 480 nm. The full width at half maximum of the emission peak is less than 100 nm, and the photoluminescence quantum yield is in a range of 5% to 100%.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
  • Publication number: 20240088116
    Abstract: A display screen includes a backplane, an array of light-emitting diodes electrically integrated with the backplane, the array of light-emitting diodes configured to emit UV light in a first wavelength range, and a plurality of isolation walls formed on the backplane between adjacent light-emitting diodes of the array of light-emitting diodes with the isolation walls spaced apart from the light-emitting diodes and extending above the light-emitting diodes. The plurality of isolation walls include a core of a first material and a coating covering at least a portion of the core extending above the light-emitting diodes. The coating is an opaque second material having transmittance less than 1% of light in the first wavelength range.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Lisong Xu, Byung Sung Kwak, Mingwei Zhu, Hou T. Ng, Nag B. Patibandla, Christopher Dennis Bencher
  • Publication number: 20150293371
    Abstract: A method of fabricating an electrochemical device, comprising: depositing device layers, including electrodes and corresponding current collectors, and an electrolyte layer, on a substrate; and directly patterning at least one of said device layers by a laser light pattern generated by a laser beam incident on a diffractive optical element, the laser light pattern directly patterning at least an entire device in a single laser shot. The laser direct patterning may include, among others: die patterning of thin film electrochemical devices after all active layers have been deposited; selective ablation of cathode/anode material from corresponding current collectors; and selective ablation of electrolyte material from current collectors, Furthermore, directly patterning of the electrochemical device may be by a shaped beam generated by a laser beam incident on a diffractive optical element, and the shaped beam may be moved across the working surface of the device.
    Type: Application
    Filed: October 25, 2013
    Publication date: October 15, 2015
    Inventors: Daoying Song, Leo B. Kwak, Bruce E. Adams, Theodore P. Moffitt
  • Publication number: 20050285117
    Abstract: A SiC die with Os and/or W/WC/TiC contacts and metal conductors is encapsulated either alone or on a ceramic substrate using a borosilicate (BSG) glass that is formed at a temperature well below upper device operating temperature limits but serves as a stable protective layer above the operating temperature (over 1000° C., preferably >1200° C.). The glass is preferably 30-50% B2O3/70-50% SiO2, formed by reacting a mixed powder, slurry or paste of the components at 460°-1000° C. preferably about 700° C. The die can be mounted on the ceramic substrate using the BSG as an adhesive. Metal conductors on the ceramic substrate are also protected by the BSG. The preferred ceramic substrate is AlN but SiC/AlN or Al2 03 can be used.
    Type: Application
    Filed: June 15, 2005
    Publication date: December 29, 2005
    Applicant: Advanced Power Technology, Inc., a Delaware corporation
    Inventors: James Parsons, B. Kwak