Patents by Inventor Babar Khan

Babar Khan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230285879
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Application
    Filed: May 17, 2023
    Publication date: September 14, 2023
    Inventors: Babar Khan, Emily R. Kinser
  • Publication number: 20230277617
    Abstract: The present invention provides methods for the prevention, control, disruption and treatment of bacterial biofilms with lysin, particularly lysin having capability to kill Staphylococcal bacteria, including drug resistant Staphylococcus aureus, particularly the lysin PlySs2. The invention also provides compositions and methods for use in treatment or modulation of bacterial biofilm(s) and biofilm formation.
    Type: Application
    Filed: November 11, 2022
    Publication date: September 7, 2023
    Inventors: Raymond SCHUCH, Robert C. NOWINSKI, Michael WITTEKIND, Babar KHAN, Jimmy ROTOLO
  • Publication number: 20230263077
    Abstract: Embodiments of the invention provide a resistive switching device that includes a metal interconnect electrode and a memory stack over the metal interconnect electrode. The memory stack includes a plurality of layers that includes a top electrode, a plasma-treated bottom electrode, and a dielectric layer between the top electrode and the plasma-treated bottom electrode. The plasma-treated bottom electrode includes a portion of a blanket bottom electrode layer. The plasma-treated bottom electrode further includes a current-conducting filament characteristic that results from a charge particle treatment applied to the blanket bottom electrode while a top surface of the blanket bottom electrode is exposed.
    Type: Application
    Filed: February 3, 2023
    Publication date: August 17, 2023
    Inventors: TAKASHI ANDO, HIROYUKI MIYAZOE, EDUARD ALBERT CARTIER, BABAR KHAN, YOUNGSEOK KIM, DEXIN KONG, SOON-CHEON SEO, JOEL P. DE SOUZA
  • Patent number: 11684878
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: June 27, 2023
    Assignee: International Business Machines Corporation
    Inventors: Babar Khan, Emily R. Kinser
  • Patent number: 11647680
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a bottom electrode, wherein the bottom electrode is formed on a metal interconnect electrode, and a dielectric layer on a surface of the bottom electrode. The semiconductor device also includes a top electrode formed on a surface of the dielectric layer, wherein at least one of the top electrode or the bottom electrode is a plasma treated top electrode or plasma treated bottom electrode. Also provided are embodiments for a method of fabricating a resistive switching device where at least one of the plurality of layers of the memory stack is processed with a charge particle treatment.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: May 9, 2023
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Hiroyuki Miyazoe, Eduard Albert Cartier, Babar Khan, Youngseok Kim, Dexin Kong, Soon-Cheon Seo, Joel P. De Souza
  • Patent number: 11524046
    Abstract: The present invention provides methods for the prevention, control, disruption and treatment of bacterial biofilms with lysin, particularly lysin having capability to kill Staphlococcal bacteria, including drug resistant Staphylococcus aureus, particularly the lysin PlySs2. The invention also provides compositions and methods for use in treatment or modulation of bacterial biofilm(s) and biofilm formation.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 13, 2022
    Assignee: CONTRAFECT CORPORATION
    Inventors: Raymond Schuch, Robert C. Nowinski, Michael Wittekind, Babar Khan, Jimmy Rotolo
  • Patent number: 11444207
    Abstract: A semiconductor device includes a field-effect transistor, a first back-end-of-line (BEOL) metallization level and a second BEOL metallization level disposed above the first BEOL metallization level. A portion of the field-effect transistor includes lithium therein, and the field-effect transistor is integrated between the first and second BEOL metallization levels. The portion of the field-effect transistor including the lithium therein can be a channel layer, or a source and/or drain region.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: September 13, 2022
    Assignee: International Business Machines Corporation
    Inventors: Babar Khan, Ning Li, Arvind Kumar, Yun Seog Lee, Joel P. de Souza, Devendra K. Sadana
  • Publication number: 20210391536
    Abstract: Provided are embodiments for a semiconductor device. The semiconductor device includes a bottom electrode, wherein the bottom electrode is formed on a metal interconnect electrode, and a dielectric layer on a surface of the bottom electrode. The semiconductor device also includes a top electrode formed on a surface of the dielectric layer, wherein at least one of the top electrode or the bottom electrode is a plasma treated top electrode or plasma treated bottom electrode. Also provided are embodiments for a method of fabricating a resistive switching device where at least one of the plurality of layers of the memory stack is processed with a charge particle treatment.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: TAKASHI ANDO, HIROYUKI MIYAZOE, EDUARD ALBERT CARTIER, BABAR KHAN, YOUNGSEOK KIM, DEXIN KONG, SOON-CHEON SEO, JOEL P. DE SOUZA
  • Patent number: 11201244
    Abstract: Embodiments of the invention are directed to a resistive switching device (RSD). A non-limiting example of the RSD includes a fin-shaped element formed on a substrate, wherein the fin-shaped element includes a source region, a central channel region, and a drain region. A gate is formed over a top surface and sidewalls of the central channel region. The fin-shaped element is doped with impurities that generate interstitial charged particles configured to move interstitially through a lattice structure of the fin-shaped element under the influence of an electric field applied to the RSD.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: December 14, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel P. de Souza, Babar Khan, Arvind Kumar, Yun Seog Lee, Ning Li, Devendra K. Sadana
  • Patent number: 11161066
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: November 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Babar Khan, Emily R. Kinser
  • Patent number: 11145658
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: October 12, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Sivananda K. Kanakasabapathy, Babar A. Khan, Masaharu Kobayashi, Effendi Leobandung, Theodorus E. Standaert, Xinhui Wang
  • Patent number: 11107821
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: August 31, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Sivananda K. Kanakasabapathy, Babar A. Khan, Masaharu Kobayashi, Effendi Leobandung, Theodoras E. Standaert, Xinhui Wang
  • Patent number: 11056493
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 6, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Sivananda K. Kanakasabapathy, Babar A. Khan, Masaharu Kobayashi, Effendi Leobandung, Theodorus E. Standaert, Xinhui Wang
  • Publication number: 20210106933
    Abstract: A method for filtering magnetic particles includes spinning a filter including a plurality of pores within a substrate. The method further includes applying, subsequent to spinning the filter, an external magnetic field to the filter. The method includes disposing a solution including a first particle and a second particle onto the filter. The first particle includes a magnetic particle of interest. The method further includes separating the first particle from the second particle by capturing the first particle within a pore of the plurality of pores within the substrate.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Babar Khan, Emily R. Kinser
  • Publication number: 20200365737
    Abstract: Embodiments of the invention are directed to a resistive switching device (RSD). A non-limiting example of the RSD includes a fin-shaped element formed on a substrate, wherein the fin-shaped element includes a source region, a central channel region, and a drain region. A gate is formed over a top surface and sidewalls of the central channel region. The fin-shaped element is doped with impurities that generate interstitial charged particles configured to move interstitially through a lattice structure of the fin-shaped element under the influence of an electric field applied to the RSD.
    Type: Application
    Filed: May 13, 2019
    Publication date: November 19, 2020
    Inventors: Joel P. de Souza, Babar Khan, Arvind Kumar, Yun Seog Lee, Ning Li, Devendra K. Sadana
  • Patent number: 10825821
    Abstract: A computing device includes a wafer having multiple layers, the wafer including a top layer and sublayers disposed below it, the sublayers including one or more memory devices. The computing device also includes two or more shaped retainer elements shaped to mate with and at least partially surround at least the top of the wafer and in electrical contact with one or more chips disposed on a top of the top layer and a holding device that mates with the retainer elements to provide at least power to the retaining elements. So arranged, the wafer may be cooled.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 3, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Babar A. Khan, Arvind Kumar, Kamal K. Sikka
  • Publication number: 20200303386
    Abstract: A magnetic tunnel junction (MTJ) containing device and methods of constructing the MTJ containing device are described. In an example, the MTJ containing device may be a memory element including a bottom electrode structure, a MTJ pillar, and a top electrode structure located on the MTJ pillar. The MTJ pillar has a non-circular lateral cross section, where the MTJ pillar has a bottommost portion forming an interface with an uppermost portion of the bottom electrode structure. The MTJ pillar has a lateral perimeter-to-area ratio that defines a breakdown voltage of the MTJ pillar.
    Type: Application
    Filed: March 21, 2019
    Publication date: September 24, 2020
    Inventors: Chandrasekharan Kothandaraman, Babar Khan, Nathan P. Marchack, Bruce B. Doris
  • Patent number: 10784268
    Abstract: A magnetic tunnel junction (MTJ) containing device and methods of constructing the MTJ containing device are described. In an example, the MTJ containing device may be a memory element including a bottom electrode structure, a MTJ pillar, and a top electrode structure located on the MTJ pillar. The MTJ pillar has a non-circular lateral cross section, where the MTJ pillar has a bottommost portion forming an interface with an uppermost portion of the bottom electrode structure. The MTJ pillar has a lateral perimeter-to-area ratio that defines a breakdown voltage of the MTJ pillar.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: September 22, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekharan Kothandaraman, Babar Khan, Nathan P. Marchack, Bruce B. Doris
  • Patent number: 10741752
    Abstract: Methods of forming the MRAM generally include forming an array of MTJ having sub-lithographic dimensions. The array can be formed by providing a substrate including a MTJ material stack including a reference ferromagnetic layer, a tunnel barrier layer, and a free ferromagnetic layer on an opposite side of the tunnel barrier layer. A hardmask layer is deposited onto the MTJ material stack. A first sidewall spacer is formed on the hardmask layer in a first direction. A second sidewall spacer is formed over the first sidewall in a second direction, wherein the first direction is orthogonal to the second direction. The second sidewall spacer intersects the first sidewall spacer. The first sidewall spacer is processed using the second sidewall spacer as mask to form a pattern of oxide pillars having sub-lithographic dimensions. The pattern of oxide pillars are transferred into the MTJ stack to form the array.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Babar A. Khan, Chandrasekharan Kothandaraman, John R. Sporre
  • Patent number: 10707217
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are provided. The method includes forming deep trench capacitor structures in a silicon on insulator (SOI) wafer. The method further includes forming a plurality of composite fin structures from a semiconductor material of the SOI wafer and conductive material of the deep trench capacitor structures. The method further includes forming a liner over the deep trench capacitor structures including the conductive material of the deep trench capacitor structures. The method further includes forming replacement gate structures with the liner over the deep trench capacitor structures protecting the conductive material during deposition and etching processes.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: July 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ricardo A. Donaton, Babar A. Khan, Xinhui Wang, Deepal Wehella-Gamage