Patents by Inventor Badri Narayan Ramamurthi

Badri Narayan Ramamurthi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230265560
    Abstract: Disclosed herein is a pumping liner, having a gas inlet configured to receive a process gas; openings in communication with the gas inlet, the openings configured to surround a substrate support and to direct the process gas onto the substrate support. At least a portion of the openings each has a different size. Each of the openings is configured to provide a gas mass flow rate that is within ±5% of a target gas mass flow rate. The pumping liner further includes a gas outlet configured to receive unreacted process gas and reacted process gas byproducts.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 24, 2023
    Inventors: Badri Narayan Ramamurthi, Viren Sunil Kalsekar, Vinay K. Prabhakar
  • Patent number: 11280270
    Abstract: A combustor for a gas turbine system includes a combustor casing having an interior-establishing wall, and a chamber extending to the interior-establishing wall. In addition, the combustor includes an igniter assembly disposed within the chamber such that a tip of the igniter assembly is positioned radially outwardly from the interior-establishing wall. The igniter assembly includes a first electrode, a second electrode, and an insulator. In addition, the first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a minimum cross-sectional area of the outlet passage, and the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: March 22, 2022
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Patent number: 10995672
    Abstract: The present disclosure relates to gas turbine engine operation in which an igniter assembly is provided with an electrical energy input (e.g., an electrical waveform) that is configured to increase a likelihood of igniting a fuel-air mixture surrounding the igniter assembly. In certain embodiments, the igniter assembly is supplied with an augmented electrical waveform that may reduce a quantity of sparks generated by the igniter assembly before successful light-off (e.g., ignition) of the fuel-air mixture is achieved (e.g., as compared to a quantity of sparks generated to achieve ignition by an igniter assembly that receives an electrical energy input in the form of a conventional electrical waveform). Accordingly, the augmented electrical waveform may reduce wear (e.g., via oxidation) on electrodes of the igniter assembly, such as a primary electrode (e.g., a center electrode) and a secondary electrode (e.g., an outer shell electrode) disposed about the primary electrode.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: May 4, 2021
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Karim Younsi, Andrey Meshkov, Jason Fredrick Trotter, Timothy John Sommerer, Ramanujam Ramabhadran, Alvaro Alexander Briceno, Charles Cook, Mark Wayne McWaters
  • Patent number: 10954168
    Abstract: A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a free silicon proportion, and a chemical vapor infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having essentially no free silicon proportion disposed on an outer surface of at least a portion of the substrate.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: March 23, 2021
    Assignee: General Electric Company
    Inventors: Krishan Lal Luthra, Gregory Scot Corman, Badri Narayan Ramamurthi
  • Publication number: 20210040890
    Abstract: A combustor for a gas turbine system includes a combustor casing having an interior-establishing wall, and a chamber extending to the interior-establishing wall. In addition, the combustor includes an igniter assembly disposed within the chamber such that a tip of the igniter assembly is positioned radially outwardly from the interior-establishing wall. The igniter assembly includes a first electrode, a second electrode, and an insulator. In addition, the first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a minimum cross-sectional area of the outlet passage, and the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Patent number: 10837369
    Abstract: An igniter assembly for a gas turbine combustor includes a first electrode, a second electrode, and an insulator. The first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a cross-sectional area of the outlet passage, and the cross-sectional area of the outlet passage is substantially constant along a longitudinal extent of the outlet passage. In addition, the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: November 17, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Patent number: 10618848
    Abstract: The present disclosure relates to ceramic matrix composites made by chemical vapor infiltration, methods of making the ceramic matrix composites, and ceramic matrix composite turbine components for use in a hot gas pathway. A method of fabricating a ceramic matrix composite is provided that can include the steps of: (i) forming a plurality of holes in a ceramic matrix composite preform of desired shape; and (ii) densifying the preform by a chemical vapor infiltration process to form a part or most of the matrix. A ceramic matrix composite is also provided that can be used in hot combustion gases made according to the aforementioned ceramic matrix composite fabrication method described herein.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: April 14, 2020
    Assignee: General Electric Company
    Inventors: Krishan Lal Luthra, Gregory Scot Corman, Badri Narayan Ramamurthi
  • Publication number: 20200018239
    Abstract: The present disclosure relates to gas turbine engine operation in which an igniter assembly is provided with an electrical energy input (e.g., an electrical waveform) that is configured to increase a likelihood of igniting a fuel-air mixture surrounding the igniter assembly. In certain embodiments, the igniter assembly is supplied with an augmented electrical waveform that may reduce a quantity of sparks generated by the igniter assembly before successful light-off (e.g., ignition) of the fuel-air mixture is achieved (e.g., as compared to a quantity of sparks generated to achieve ignition by an igniter assembly that receives an electrical energy input in the form of a conventional electrical waveform). Accordingly, the augmented electrical waveform may reduce wear (e.g., via oxidation) on electrodes of the igniter assembly, such as a primary electrode (e.g., a center electrode) and a secondary electrode (e.g., an outer shell electrode) disposed about the primary electrode.
    Type: Application
    Filed: July 12, 2018
    Publication date: January 16, 2020
    Inventors: Badri Narayan Ramamurthi, Karim Younsi, Andrey Meshkov, Jason Fredrick Trotter, Timothy John Sommerer, Ramanujam Ramabhadran, Alvaro Alexander Briceno, Charles Cook, Mark Wayne McWaters
  • Publication number: 20190063329
    Abstract: An igniter assembly for a gas turbine combustor includes a first electrode, a second electrode, and an insulator. The first electrode, the second electrode, and the insulator form a cavity, the second electrode forms an outlet passage extending from the cavity, a maximum cross-sectional area of the cavity is greater than a cross-sectional area of the outlet passage, and the cross-sectional area of the outlet passage is substantially constant along a longitudinal extent of the outlet passage. In addition, the first electrode and the second electrode are configured to ionize gas within the cavity in response to an electrical current applied to the first electrode or to the second electrode.
    Type: Application
    Filed: August 23, 2017
    Publication date: February 28, 2019
    Inventors: Badri Narayan Ramamurthi, Svetlana Selezneva, Mohamed Rahmane, Andrey Meshkov, Karim Younsi, Mark Wayne McWaters, Philip Nose Alberti
  • Publication number: 20190023617
    Abstract: A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a free silicon proportion, and a chemical vapor infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having essentially no free silicon proportion disposed on an outer surface of at least a portion of the substrate.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: Krishan Lal Luthra, Gregory Scot Corman, Badri Narayan Ramamurthi
  • Patent number: 10093586
    Abstract: A method for forming a ceramic matrix composite article includes forming by melt infiltration a ceramic matrix composite substrate inducing a ceramic fiber reinforcement material in a ceramic matrix material having a free silicon proportion and forming by chemical vapor infiltration a ceramic matrix composite outer layer including a ceramic fiber reinforcement material in a ceramic matrix material having no free silicon proportion disposed on at least a portion of the substrate.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 9, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Krishan Lal Luthra, Gregory Scot Corman, Badri Narayan Ramamurthi
  • Patent number: 9985295
    Abstract: A solid oxide fuel cell is disclosed. The fuel cell includes a porous anode, formed of finely-dispersed nickel/stabilized-zirconia powder particles. The particles have an average diameter of less than about 300 nanometers. They are also characterized by a tri-phase length of greater than about 50 ?m/?m3. A solid oxide fuel cell stack is also described, along with a method of forming an anode for a solid oxide fuel cell. The method includes the step of using a spray-agglomerated, nickel oxide/stabilized-zirconia powder to form the anode.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: May 29, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, Yuk-Chiu Lau, Anteneh Kebbede, Harish Radhakrishna Acharya, Badri Narayan Ramamurthi, Gregory John Parker
  • Patent number: 9577297
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated separator disposed in the housing volume. The elongated separator defines an axis of the cell. The separator has an inner surface and an outer surface. The inner surface of the separator defines a first compartment. The outer surface of the separator and the interior surface of the housing define a second compartment having a volume. The cell further includes a conductive matrix disposed in at least a portion of the second compartment volume such that the conductive matrix occupies a gap between the outer surface of the separator and the interior surface of the housing. The gap in the second compartment extends in a direction substantially perpendicular to the axis of the cell.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: February 21, 2017
    Assignee: General Electric Company
    Inventors: Mohamed Rahmane, Badri Narayan Ramamurthi, Andrey Meshkov, Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, Jr., Chandra Sekher Yerramalli
  • Publication number: 20160251269
    Abstract: A ceramic matrix composite article includes a melt infiltration ceramic matrix composite substrate comprising a ceramic fiber reinforcement material in a ceramic matrix material having a free silicon proportion, and a chemical vapor infiltration ceramic matrix composite outer layer comprising a ceramic fiber reinforcement material in a ceramic matrix material having essentially no free silicon proportion disposed on an outer surface of at least a portion of the substrate.
    Type: Application
    Filed: February 26, 2015
    Publication date: September 1, 2016
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Krishan Lal LUTHRA, Gregory Scot CORMAN, Badri Narayan RAMAMURTHI
  • Publication number: 20160251272
    Abstract: A preform can be subject to chemical vapor infiltration (CVI) to define a ceramic matrix composite (CMC) structure, a supplemental preform can be added to the CMC structure to define an expanded structure and CVI can be performed using the expanded structure. The adding of a supplemental preform and performing CVI using the expanded structure can be repeated.
    Type: Application
    Filed: February 27, 2015
    Publication date: September 1, 2016
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jared Hogg WEAVER, Badri Narayan RAMAMURTHI
  • Publication number: 20160229755
    Abstract: The present disclosure relates to ceramic matrix composites made by chemical vapor infiltration, methods of making the ceramic matrix composites, and ceramic matrix composite turbine components for use in a hot gas pathway. A method of fabricating a ceramic matrix composite is provided that can include the steps of: (i) forming a plurality of holes in a ceramic matrix composite preform of desired shape; and (ii) densifying the preform by a chemical vapor infiltration process to form a part or most of the matrix. A ceramic matrix composite is also provided that can be used in hot combustion gases made according to the aforementioned ceramic matrix composite fabrication method described herein.
    Type: Application
    Filed: August 28, 2014
    Publication date: August 11, 2016
    Inventors: Krishan Lal LUTHRA, Gregory Scot CORMAN, Badri Narayan RAMAMURTHI
  • Publication number: 20150318586
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated separator disposed in the housing volume. The elongated separator defines an axis of the cell. The separator has an inner surface and an outer surface. The inner surface of the separator defines a first compartment. The outer surface of the separator and the interior surface of the housing define a second compartment having a volume. The cell further includes a conductive matrix disposed in at least a portion of the second compartment volume such that the conductive matrix occupies a gap between the outer surface of the separator and the interior surface of the housing. The gap in the second compartment extends in a direction substantially perpendicular to the axis of the cell.
    Type: Application
    Filed: July 13, 2015
    Publication date: November 5, 2015
    Inventors: Mohamed Rahmane, Badri Narayan Ramamurthi, Andrey Meshkov, Richard Louis Hart, Michael Alan Vallance, David Charles Bogdan, JR., Chandra Sekher Yerramalli
  • Patent number: 9130249
    Abstract: The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 8, 2015
    Assignee: General Electric Company
    Inventors: Badri Narayan Ramamurthi, Satoshi Atsuchi, Andrey I Meshkov, Mohamed Rahmane, Svetlana Selezneva
  • Patent number: 9105896
    Abstract: The present application provides for metal rings and ceramic collars for active brazing in sodium-based thermal batteries. The metal rings may be outer and inner Ni rings configured for sealing to an alpha-alumina collar via active brazing for use in NaMx cells. The inner and outer Ni metal rings may be sealed to differing portions of the alpha-alumina collar. The portions of the outer and inner Ni rings active brazed to the alpha-alumina collar may define a tapered thickness that reduces internal stresses at the active brazed joints resulting from differing coefficients of thermal expansion between the Ni metal rings and the alpha-alumina collar. The portions of the outer and inner Ni rings and alpha-alumina collar sealed by active brazing, and thereby the active braze joints themselves, may be oriented to control or dictate the stresses on the joints during use.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: August 11, 2015
    Assignee: General Electric Company
    Inventors: Michael Colan Moscinski, Badri Narayan Ramamurthi, Sundeep Kumar, Mohamed Rahmane
  • Patent number: 9028997
    Abstract: The present application provides for ceramic collars and metal rings for active brazing in sodium-based thermal batteries. The ceramic collar may be an alpha-alumina collar configured for active brazing, and thereby sealing, to outer and inner Ni rings for use in NaMx cells. The portions of the alpha-alumina collar active brazed to the outer and inner Ni rings may be outwardly facing and include inwardly extending recesses. The portions of the outer and inner Ni rings active brazed to the outwardly facing portions of the collar may be inwardly facing. The alpha-alumina collar may include a greater coefficient of thermal expansion than each of the outer and inner Ni rings, and the alpha-alumina collar and outer and inner Ni rings may be configured such that a portion of the outer and inner Ni rings is deformed into the inwardly extending recesses of the alpha-alumina collar after active brazing thereof.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventors: Michael Colan Moscinski, Reza Sarrafi-Nour, Badri Narayan Ramamurthi, Mohandas Nayak, Darren Michael Stohr, Sundeep Kumar, Mohamed Rahmane, Arunabh Basak, Raghavendra Rao Adharapurapu