Patents by Inventor Balachandran Gadaguntla Radhakrishnan

Balachandran Gadaguntla Radhakrishnan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145698
    Abstract: An all-solid-state battery (ASSB) cell has an anode comprising lithium metal, a solid electrolyte, and a cathode composite layer comprising cathode active material particles. Each cathode active material particle has a core of a first lithium transition metal oxide and a surface layer of a second lithium transition metal oxide, the second lithium transition metal oxide being different from the first lithium transition metal oxide. The second lithium transition metal oxide has a composition of LiNixMnyCozO2, wherein 0.40?x?0.82, 0.0?y?0.50, and 0.0?z?0.60 and x+y+z=1.
    Type: Application
    Filed: November 1, 2022
    Publication date: May 2, 2024
    Applicants: Nissan North America, Inc., Nissan Motor Co., Ltd.
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Balachandran Gadaguntla Radhakrishnan, Kazuyuki Sakamoto
  • Publication number: 20240038997
    Abstract: A lithium metal battery cell has an electrolyte and an anode comprising an anode current collector and a thin film metal layer formed on the anode current collector, the thin film metal layer consisting of a metal that forms a solid solution with lithium metal. The thin film metal layer is configured to promote dense lithium deposition between the thin film metal layer and the electrolyte during charging.
    Type: Application
    Filed: July 29, 2022
    Publication date: February 1, 2024
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Balachandran Gadaguntla Radhakrishnan, Maarten Sierhuis, Takuya Mishina, Kazuyuki Sakamoto
  • Publication number: 20240006600
    Abstract: A lithium metal battery cell has an electrolyte and an anode comprising an anode current collector and a composite interlayer formed on the anode current collector between the anode current collector and the electrolyte. The composite interlayer consists of conductive carbon and a metal additive, the composite interlayer configured to promote dense lithium deposition in the anode during charging. The metal additive in the composite interlayer is a metal that forms a solid solution with lithium metal.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Balachandran Gadaguntla Radhakrishnan, Maarten Sierhuis, Kazuyuki Sakamoto, Takuya Mishina
  • Patent number: 11715827
    Abstract: An all-solid-state battery comprises a lithium anode, a cathode, solid electrolyte and a protective layer between the solid electrolyte and the lithium anode. The protective layer comprises an ion-conducting material having an electrochemical stability window against lithium of at least 1.0 V, a lowest electrochemical stability being 0.0 V and a highest electrochemical stability being greater than 1.0 V. More particularly, when the solid electrolyte is LiSiCON, the electrochemical stability window is at least 1.5 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 1.5 V. When the solid electrolyte is sulfide-based, the electrochemical stability window is at least 2.0 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 2.0 V.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: August 1, 2023
    Assignee: Nissan North America, Inc.
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Atsushi Ohma, Maarten Sierhuis, Xin Yang, Najamuddin Mirza Baig, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson, Mohit Rakesh Mehta
  • Publication number: 20230059842
    Abstract: A method of manufacturing an all-solid-state battery cell includes depositing an interlayer directly onto an anode current collector; depositing a solid electrolyte onto the interlayer opposite the anode current collector; forming a cathode on the solid electrolyte opposite the interlayer, wherein the cathode contains one or more lithium-containing compounds; and applying pressure to achieve uniform contact between layers. The manufactured all-solid-state battery cell is anode-free prior to charging. The interlayer is configured such that lithium metal is deposited between the interlayer and the anode current collector during charging, the interlayer prevents contact between the lithium metal and the solid electrolyte, and the interlayer has a greater density than a density of the solid electrolyte.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 23, 2023
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Balachandran Gadaguntla Radhakrishnan, Maarten Sierhuis, Naoki Ueda, Kazuyuki Sakamoto, John Lawson
  • Patent number: 11522213
    Abstract: A lithium battery comprises cathode active material comprising particles of a transition metal oxide, each particle coated in an ion-conducting material that has an electrochemical stability window against lithium of at least 2.2 V, a lowest electrochemical stability being less than 2.0 V and a highest electrochemical stability being greater than 4.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: December 6, 2022
    Assignees: Nissan North America, Inc., United States of America as Represented by the Administrator of NASA
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Maarten Sierhuis, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson
  • Publication number: 20220263092
    Abstract: A lithium battery has a composite cathode comprising cathode active material including a transition metal oxide and an ion-conducting material having an electrochemical stability window against lithium of at least 2.2 V, a lowest electrochemical stability being less than 2.0 V and a highest electrochemical stability being greater than 4.2 V, the ion-conducting material selected from one or more of: Cs2LiCl3; Cs3Li2Cl5; Cs3LiCl4; CsLiCl2; Li2B3O4F3; Li3AlF6; Li3ScCl6; Li3ScF6; Li3YF6; Li9Mg3P4O16F3; LiBF4; LiThF5; Na3Li3Al2F12; and NaLi2AlF6.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 18, 2022
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Maarten Sierhuis, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson
  • Publication number: 20220255119
    Abstract: A lithium battery comprises cathode active material comprising particles of a transition metal oxide, each particle coated in an ion-conducting material that has an electrochemical stability window against lithium of at least 2.2 V, a lowest electrochemical stability being less than 2.0 V and a highest electrochemical stability being greater than 4.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventors: Shigemasa Kuwata, Hideyuki Komatsu, Maarten Sierhuis, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson
  • Publication number: 20220255078
    Abstract: An all-solid-state battery comprises a lithium anode, a cathode, solid electrolyte and a protective layer between the solid electrolyte and the lithium anode. The protective layer comprises an ion-conducting material having an electrochemical stability window against lithium of at least 1.0 V, a lowest electrochemical stability being 0.0 V and a highest electrochemical stability being greater than 1.0 V. More particularly, when the solid electrolyte is LiSiCON, the electrochemical stability window is at least 1.5 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 1.5 V. When the solid electrolyte is sulfide-based, the electrochemical stability window is at least 2.0 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 2.0 V.
    Type: Application
    Filed: February 8, 2021
    Publication date: August 11, 2022
    Inventors: Hideyuki Komatsu, Shigemasa Kuwata, Atsushi Ohma, Maarten Sierhuis, Xin Yang, Najamuddin Mirza Baig, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson, Mohit Rakesh Mehta
  • Publication number: 20210098084
    Abstract: A method for screening materials may include obtaining materials from a database. The method may include screening the materials to obtain a one or more screened materials. The method may include generating a training set based on the screened materials, validated experimental data, or both. The method may include establishing a machine learning screening model based on the training set, one or more target parameters, or both. The method may include applying the machine learning screening model to uncharacterized materials. The method may include outputting one or more materials having characteristics matching the target parameters.
    Type: Application
    Filed: September 30, 2019
    Publication date: April 1, 2021
    Inventors: Akiyoshi Park, Taehee Han, Shigemasa Kuwata, Maarten Sierhuis, Xin Yang, Atsushi Ohma, Balachandran Gadaguntla Radhakrishnan, Shreyas Honrao, John Lawson, Najamuddin Mirza Baig, Mohit Rakesh Mehta