Patents by Inventor Banahalli R. Ratna

Banahalli R. Ratna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080079858
    Abstract: An apparatus comprising a first liquid crystal elastomer, a first heating element, a first layer of thermal paste, and a second liquid crystal elastomer. The apparatus further comprising a second heating element, a second layer of thermal paste, and a third liquid crystal elastomer. The heating element can be a nickel-chromium heating element. A method comprising arranging a first heating element on a first liquid crystal elastomer, arranging a first layer of thermal paste on the first heating element, and arranging a second liquid crystal elastomer on the first layer of thermal paste.
    Type: Application
    Filed: August 30, 2007
    Publication date: April 3, 2008
    Inventors: Christopher M. Spillmann, David Cylinder, Banahalli R. Ratna, Jawad Naciri, Brett D. Martin
  • Patent number: 7122598
    Abstract: A method of making a liquid crystalline fiber is disclosed. A copolymer having a liquid crystalline side group and a crosslinking side group is crosslinked. A fiber of the crosslinking copolymer is drawn before the crosslinking reaction is complete.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: October 17, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jawad Naciri, Hong Jeon, Patrick Keller, Banahalli R. Ratna
  • Patent number: 6936215
    Abstract: The wall thickness of lipid microtubules are controlled by selecting a methanol/water system and determining the required amount of a lipid to form the desired wall thickness. The lipid is dissolved in a small portion of the heated methanol and that clear solution is added to the remaining amount of the heated methanol/water system. By slowly cooling the solution, microtubules are formed which have the desired wall thickness. Preferred microtubules have a wall thickness of just 2 bilayers and they are robust so they can be further coated. They can be made with a large aspect ratio and with lengths of greater than 250 microns. The process permits production of microtubules in very high yields.
    Type: Grant
    Filed: August 27, 1996
    Date of Patent: August 30, 2005
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Ronald R. Price, Joel M. Schnur, Banahalli R. Ratna, Mark S. Spector
  • Patent number: 6713416
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: March 30, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6660780
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: December 9, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Publication number: 20030191205
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Application
    Filed: November 27, 2002
    Publication date: October 9, 2003
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Publication number: 20030139483
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Application
    Filed: January 8, 2003
    Publication date: July 24, 2003
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6583191
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: June 24, 2003
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6576156
    Abstract: Phosphor nanoscale powder is prepared by forming a solution or slurry which comprises phosphor precursors and then firing the solid residue of the solution or slurry which comprises the phosphor precursors.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: June 10, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Banahalli R. Ratna, Anthony Dinsmore, Yongchi Tian
  • Publication number: 20020065334
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Application
    Filed: September 19, 2001
    Publication date: May 30, 2002
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6310110
    Abstract: A method of making a molecularly imprinted porous structure makes use of a surfactant analog of the molecule to be imprinted that has the imprint molecule portion serving as the surfactant headgroup. The surfactant analog is allowed to self-assemble in a mixture to create at least one supramolecular structure having exposed imprint groups. The imprinted porous structure is formed by adding reactive monomers to the mixture and allowing the monomers to polymerize, with the supramolecular structure serving as a template. The resulting solid structure has a shape that is complementary to the shape of the supramolecular structure and has cavities that are the mirror image of the imprint group. Similarly, molecularly imprinted particles may be made by using the surfactant to create a water-in-oil microemulsion wherein the imprint groups are exposed to the water phase.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: October 30, 2001
    Inventors: Michael A. Markowitz, Paul E. Schoen, Bruce P. Gaber, Banahalli R. Ratna, Paul R. Kust, David C. Turner, Douglas S. Clark, Jonathan S. Dordick
  • Patent number: 6294109
    Abstract: A new class of mesogenic compounds has the formula: where R1 is an ester (—COO—) group; R2 is H, NO2, CN, F, or Cl; R3 is H, CH2═CH, or (CH3)3Si; k is 1 or 2; q is 0 or 1; m is from 2 to 16; n is from 2 to 12; r is from 0 to n−1 (but not greater than 3 or 4); s=1 when r=0, s=0 when r≠0; x is from 0 to 4; and * denotes the position of a chiral carbon. Compounds within this class will have a smectic A* phase, and in some cases a smectic C* phase. Mixtures including one or more of these mesogenic compounds will be useful for a variety of applications.
    Type: Grant
    Filed: June 13, 1995
    Date of Patent: September 25, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Banahalli R. Ratna, Ranganathan Shashidhar, Jawad Naciri, Gregory P. Crawford, Joel M. Schnur
  • Patent number: 6156232
    Abstract: A surface for the alignment of liquid crystals containing directionally-linked groups and compounds useful for preparing such surfaces are disclosed.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: December 5, 2000
    Assignees: Geo-Centers, Inc., The United States of America as represented by the Secretary of the Navy
    Inventors: Ranganathan Shashidhar, Kirsten A. Grueneberg, Banahalli R. Ratna, Jeffrey M. Calvert, Joel M. Schnur, Mu-San Chen
  • Patent number: 6106609
    Abstract: Nanocrystalline semiconductors are synthesized within a bicontinuous cubic atrix 10. The nanocrystalline particles 12 may then be end-capped 18 with a dispersant to prevent agglomeration. One typical nanocrystalline semiconductor compound made according to the present invention is PbS. Other IV-VI semiconductors may be produced by the method of the present invention. The method of this invention may also be used to produce doped semiconductors.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: August 22, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jianping Yang, Banahalli R. Ratna
  • Patent number: 5948316
    Abstract: A surface for the alignment of liquid crystals containing directionally-linked groups.
    Type: Grant
    Filed: November 15, 1995
    Date of Patent: September 7, 1999
    Assignees: The United States of America as represented by the Secretary of the Navy, Geo-Centers, Inc.
    Inventors: Ranganathan Shashidhar, Brian Peek, Banahalli R. Ratna, Jeffrey M. Calvert, Joel M. Schnur, Mu-San Chen, Renate J. Crawford
  • Patent number: 5578351
    Abstract: A surface for the alignment of liquid crystals containing directionally-linked groups.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: November 26, 1996
    Assignees: Geo-Centers, Inc., The United States of America as represented by the Secretary of the Navy
    Inventors: Ranganathan Shashidhar, Brian Peek, Banahalli R. Ratna, Jeffrey M. Calvert, Joel M. Schnur, Mu-San Chen, Renate J. Crawford