Patents by Inventor Baolong Zheng

Baolong Zheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230045680
    Abstract: A method of forming a consolidated component having a complex shape includes providing a first component having a first shape similar to the complex shape. The method further includes placing the first component in a chamber and surrounding the first component with a medium. The method further includes applying pressure and at least one of heat or electricity into the chamber to process the first component to form a consolidated component having the complex shape.
    Type: Application
    Filed: March 3, 2021
    Publication date: February 9, 2023
    Applicants: The Regents of the University of California, National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Enrique J. LAVERNIA, Baolong ZHENG, Yizhang ZHOU, Todd MONSON
  • Publication number: 20230033494
    Abstract: A method for forming a 2-dimensional pattern or 3-dimensional object using an aluminum (Al) 5xxx series alloy includes providing a feedstock that includes the Al 5xxx alloy. The method further includes depositing, using an additive manufacturing process, the feedstock under thermal conditions that permit formation of the pattern or object. The method further includes adjusting a parameter of the additive manufacturing process during the depositing.
    Type: Application
    Filed: December 16, 2020
    Publication date: February 2, 2023
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Noam Eliaz, David Svetlizky, Julie Schoenung, Enrique J. Lavernia, Yizhang Zhou, Baolong Zheng
  • Publication number: 20220258242
    Abstract: In some embodiments, high-energy additive manufacturing (HE-AM) (e.g., directed energy deposition, powder injection, powder bed fusion, electron beam melting, solid-state, and ultrasonic) is used to overcome constraints of comparative EES fabrication techniques to produce chemical additive-free electrodes with complex, highly versatile designs for next generation EES. An exemplary rapid fabrication technique provides an approach for improving electrochemical performance while increasing efficiency and sustainability, reducing time to market, and lowering production costs. With this exemplary technique, which utilizes computer models for location specific layer-by-layer fabrication of three-dimensional parts (e.g., versatile design), a high degree of control over processing conditions may be achieved to enhance both the design and performance of EES systems.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 18, 2022
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, California Institute of Technology
    Inventors: Julie M. Schoenung, Katherine A. Acord, Baolong Zheng, Umberto Scipioni Bertoli, Andrew A. Shapiro, Qian Nataly Chen, William C. West
  • Publication number: 20200411838
    Abstract: In some embodiments, high-energy additive manufacturing (HE-AM) (e.g., directed energy deposition, powder injection, powder bed fusion, electron beam melting, solid-state, and ultrasonic) is used to overcome constraints of comparative EES fabrication techniques to produce chemical additive-free electrodes with complex, highly versatile designs for next generation EES. An exemplary rapid fabrication technique provides an approach for improving electrochemical performance while increasing efficiency and sustainability, reducing time to market, and lowering production costs. With this exemplary technique, which utilizes computer models for location specific layer-by-layer fabrication of three-dimensional parts (e.g., versatile design), a high degree of control over processing conditions may be achieved to enhance both the design and performance of EES systems.
    Type: Application
    Filed: April 27, 2020
    Publication date: December 31, 2020
    Inventors: Julie M. Schoenung, Katherine A. Acord, Baolong Zheng, Umberto Scipioni Bertoli, Andrew A. Shapiro, Qian Nataly Chen, William C. West
  • Patent number: 9963344
    Abstract: Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600° C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure spark discharge sintering.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 8, 2018
    Assignee: National Technology & Engineering Solution of Sandia, LLC
    Inventors: Todd Monson, Enrique J. Lavernia, Baolong Zheng, Yizhang Zhou
  • Publication number: 20160207769
    Abstract: Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600° C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure spark discharge sintering.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 21, 2016
    Inventors: Todd Monson, Enrique J. Lavernia, Baolong Zheng, Yizhang Zhou