Patents by Inventor Baoquan Sun

Baoquan Sun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220009898
    Abstract: The present invention provides, a novel method for producing a compound represented by formula (I) and a novel method for producing a compound represented by formula (B) or a salt thereof, which are intermediates in the production of formula (I).
    Type: Application
    Filed: September 27, 2021
    Publication date: January 13, 2022
    Applicant: MOCHIDA PHARMACEUTICAL CO., LTD.
    Inventors: Hideharu UCHIDA, Tsutomu SATOH, Baoquan SUN, Chunbo SHA, Jinguang LIN, Yonghui GE, Yanliang CHEN, Bin ZHAO, Xiaomin GU, Jian LUO, Chuan CHEN, Xiaofei CAI, Jiajie YE, Jie LI, Fenglai SUN
  • Patent number: 9275856
    Abstract: A method for forming an electronic switching device on a substrate, wherein the method comprises depositing the active semiconducting layer of the electronic switching device onto the substrate from a liquid dispersion of ligand-modified colloidal nanorods, and subsequently immersing the substrate into a growth solution to increase the diameter and/or length of the nanorods on the substrate, and wherein the as-deposited nanorods are aligned such that their long-axis is aligned preferentially in the plane of current flow in the electronic switching device.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: March 1, 2016
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Henning Sirringhaus, Baoquan Sun
  • Publication number: 20140170818
    Abstract: A method for forming an electronic switching device on a substrate, wherein the method comprises depositing the active semiconducting layer of the electronic switching device onto the substrate from a liquid dispersion of ligand-modified colloidal nanorods, and subsequently immersing the substrate into a growth solution to increase the diameter and/or length of the nanorods on the substrate, and wherein the as-deposited nanorods are aligned such that their long-axis is aligned preferentially in the plane of current flow in the electronic switching device.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Henning Sirringhaus, Baoquan Sun
  • Publication number: 20120228386
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Applicant: Aviva Biosciences Corporation
    Inventors: Lei WU, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20100264403
    Abstract: A method for forming an electronic switching device on a substrate, wherein the method comprises depositing the active semiconducting layer of the electronic switching device onto the substrate from a liquid dispersion of ligand-modified colloidal nanorods, and subsequently immersing the substrate into a growth solution to increase the diameter and/or length of the nanorods on the substrate, and wherein the as-deposited nanorods are aligned such that their long-axis is aligned preferentially in the plane of current flow in the electronic switching device.
    Type: Application
    Filed: August 9, 2006
    Publication date: October 21, 2010
    Inventors: Henning Sirringhaus, Baoquan Sun
  • Publication number: 20100260984
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 14, 2010
    Applicants: AVIVA BIOSCIENCES CORPORATION, TSINGHUA UNIVERSITY, CAPITALBIO CORPORATION
    Inventors: Lei WU, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7811768
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on the substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 12, 2010
    Assignees: Aviva Biosciences Corporation, Tsinghua University, CAPTIALBIO Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20100236614
    Abstract: Semiconductor nanocrystals (NCs) are promising materials for applications in photovoltaic (PV) structures that could benefit from size-controlled tunability of absorption spectra, the ease of realization of various tandem architectures, and perhaps, increased conversion efficiency in the ultraviolet through carrier multiplication. The first practical step toward utilization of the unique properties of NCs in PV technologies could be through their integration into traditional silicon-based solar cells. Here, we demonstrate an example of such hybrid PV structures that combine colloidal NCs with amorphous silicon. In these structures, NCs and silicon are electronically coupled, and the regime of this coupling can be tuned by altering the alignment of NC states with regard to silicon band edges. For example, using wide-gap CdSe NCs we demonstrate a photoresponse which is exclusively due to the NCs.
    Type: Application
    Filed: February 5, 2010
    Publication date: September 23, 2010
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Victor I. Klimov, Alp T. Findikoglu, Baoquan Sun, Donald J. Werder, Milan Sykora
  • Patent number: 7776543
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on the substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: August 17, 2010
    Assignees: Aviva Biosciences Corporation, Tsinghua University, CAPTIALBIO Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7718419
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: May 18, 2010
    Assignee: Aviva Biosciences Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7422703
    Abstract: Nanometer-scaled up-converting fluoride phosphor particles and processes of making them are disclosed. In the process, an aqueous solution consisting of soluble salts of rare-earth metal ions at a molar ratio of (yttrium, lanthanum or gadolinium): ytterbium:(erbium, holmium, terbium or thulium)=(70-90):(0-29):(0.001-15) is mixed a rare-earth metal chelator and a soluble fluoride salt to form precipitates, which are then annealed at an elevated temperature to produce nanometer-scaled up-converting fluoride phosphor particles. The particle size is between 35 nm and 200 nm, and can be controlled by the amount of the metal chelator added to the solution. The nanometer-sized particle is applicable to many biological assays.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: September 9, 2008
    Assignee: Capital Biochip Company Ltd
    Inventors: Guangshun Yi, Baoquan Sun, Depu Chen, Yuxiang Zhou, Jing Cheng, Wenjun Yang, Yue Ge, Lianghong Guo
  • Publication number: 20080200349
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: August 20, 2007
    Publication date: August 21, 2008
    Applicants: AVIVA BIOSCIENCES CORPORATION, TSINGHUA UNIVERSITY, CAPITAL BIOCHIP CORPORATION
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20060003466
    Abstract: Nanometer-scaled up-converting fluoride phosphor particles and processes of making them are disclosed. In the process, an aqueous solution consisting of soluble salts of rare-earth metal ions at a molar ratio of (yttrium, lanthanum or gadolinium): ytterbium:(erbium, holmium, terbium or thulium)=(70-90):(0-29):(0.001-15) is mixed a rare-earth metal chelator and a soluble fluoride salt to form precipitates, which are then annealed at an elevated temperature to produce nanometer-scaled up-converting fluoride phosphor particles. The particle size is between 35 nm and 200 nm, and can be controlled by the amount of the metal chelator added to the solution. The nanometer-sized particle is applicable to many biological assays.
    Type: Application
    Filed: April 15, 2003
    Publication date: January 5, 2006
    Inventors: Guangshun Yi, Baoquan Sun, Depu Chen, Yuxiang Zhou, Jing Cheng, Wenjun Yang, Yue Ge, Lianghong Guo
  • Publication number: 20050009002
    Abstract: This invention relates generally to the field of production of coated magnetizable microparticles and uses thereof. In particular, the invention provides a process for producing coated magnetizable microparticles with active functional groups, which process uses, inter alia, conducting polymerization of said coating monomers on the surface of magnetic particle to form coated magnetizable microparticles with active functional groups in the presence of a coupling agent, coating monomers, a functionalization reagent, a cross-linking agent and an initiator in an organic solvent containing a surfactant. The coated magnetizable microparticles produced according to the present processes and uses of the coated magnetizable microparticles, e.g., in isolating and/or manipulating various moieties are also provided.
    Type: Application
    Filed: March 20, 2002
    Publication date: January 13, 2005
    Inventors: Depu Chen, Xin Xie, Xu Zhang, Baoquan Sun
  • Publication number: 20020137059
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Application
    Filed: August 7, 2001
    Publication date: September 26, 2002
    Inventors: Lei Wu, Xiaobo Wang, Gouliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang