Patents by Inventor Baranidhar Ramanathan

Baranidhar Ramanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11979186
    Abstract: Disclosed herein are methods and systems for computing a launch power for an optical node by collecting data for an optical network segment and inputting the collected data and first power spectral density values into a machine learning model which are used to compute a first non-linear interference value. A first generalized-optical signal-to-noise ratio value is computed using the computed first non-linear interference value and amplified spontaneous emission values. At least one second generalized-optical signal-to-noise ratio value is computed using at least one second non-linear interference value, computed using at least one second power spectral density values, and the amplified spontaneous emission values. A highest generalized-optical signal-to-noise ratio value is determined by comparing the first generalized-optical signal-to-noise ratio value and the at least one second generalized-optical signal-to-noise ratio value.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: May 7, 2024
    Assignee: Infinera Corporation
    Inventors: Ankur Neog, Zhong Pan, Baranidhar Ramanathan
  • Publication number: 20230308205
    Abstract: An optical network and a method of use are herein disclosed. The method comprises: receiving, by a DEMUX module of a local ROADM, a request from an upstream ROADM, the upstream ROADM being upstream from the local ROADM on a fiber optic line, the local ROADM comprising the DEMUX module and first and second MUX modules, the request including first instructions to perform an operation on the local ROADM; sending, by the DEMUX module, a distributed request to the first and second MUX modules, the distributed request including second instructions to perform the operation on the first and second MUX modules; attempting, by the first and second MUX modules, to perform the operation; and sending a consolidated response to the upstream ROADM indicative of one of a success and a failure of performing the operation on the first and second MUX modules.
    Type: Application
    Filed: May 24, 2023
    Publication date: September 28, 2023
    Inventors: Nikhil Satyarthi, Ashok Kunjidhapatham, Sanjeev Ramachandran, Jonathan Buset, Baranidhar Ramanathan
  • Publication number: 20230261749
    Abstract: Networks and network elements having a service and power control orchestrator are disclosed, including a network element comprising a processor; a first port coupled to a first optical link carrying a first optical signal; a WSS having a multiplexer, a demultiplexer, and a control block operable to control the multiplexer/demultiplexer. The WSS operable to switch the first optical signal into a second optical signal. A second port is coupled to a second optical link, operable to carry the second optical signal, and in optical communication with the WSS. A memory stores an orchestrator application, an OTSA component, a service component, and instructions that cause the processor to: store a logical ROADM model having a connectivity matrix of the network element; receive a communication associated with the control block based on the logical ROADM model; and transmit, to the control block, a service loading sequence based on the logical ROADM model.
    Type: Application
    Filed: February 2, 2023
    Publication date: August 17, 2023
    Inventors: Baranidhar Ramanathan, Ashok Kunjidhapatham, Sanjeev Ramachandran, Johathan Buset, Nikhil Satyarthi, Bhupathi Rao Yellinedi, Badareenath Alur Sreenivasacharya, Anil Naduvile Veedu, Aryabhata Deshpande, Servesh Singh, Dinesh Kumar Parkasam
  • Publication number: 20230236882
    Abstract: Disclosed herein are methods and systems involving an event scheduler sub-system configured for aggregation, prioritization, and serialization of software application events, including a method comprising receiving event and associated event data; determining event type and event object key; storing the event data in an event handler data table; generating a priority group number and an insertion order number associated with the event; generating a new queue element comprising the priority group number, the insertion order number, a reference to the event handler, the object key, and the event type; inserting the new queue element to an event scheduler priority queue; sending a signal from the event handler to the event scheduler indicating availability of the new queue element to process; retrieving the event data associated with a queue element with a highest priority in the priority queue; and passing the event data to an admin application for processing.
    Type: Application
    Filed: January 27, 2023
    Publication date: July 27, 2023
    Inventors: Nikhil Satyarthi, Ashok Kunjidhapatham, Sanjeev Ramachandran, Badareenath Alur Sreenivasacharya, Baranidhar Ramanathan
  • Publication number: 20230224063
    Abstract: An optical network and a method of use are herein disclosed. The optical network comprises a fiber optic line, two or more ROADMs, and an orchestrator comprising a processor and a non-transitory computer-readable medium storing processor-executable instructions that, when executed, cause the processor to: receive an operation to execute, the operation being a loading of a first optical service on the fiber optic line by a local ROADM; determine a status of a downstream ROADM as being available; reserve the downstream ROADM for the loading of the first optical service by preventing the downstream ROADM from loading a second optical service on the fiber optic line and disabling one or more control block of the downstream ROADM, thereby preventing the one or more control block from adjusting a configuration of the downstream ROADM; and load the first optical service on the fiber optic line.
    Type: Application
    Filed: January 10, 2023
    Publication date: July 13, 2023
    Inventors: Nikhil Satyarthi, Ashok Kunjidhapatham, Sanjeev Ramachandran, Jonathan Buset, Baranidhar `Ramanathan
  • Publication number: 20230079797
    Abstract: Disclosed herein are methods and systems for computing a launch power for an optical node by collecting data for an optical network segment and inputting the collected data and first power spectral density values into a machine learning model which are used to compute a first non-linear interference value. A first generalized-optical signal-to-noise ratio value is computed using the computed first non-linear interference value and amplified spontaneous emission values. At least one second generalized-optical signal-to-noise ratio value is computed using at least one second non-linear interference value, computed using at least one second power spectral density values, and the amplified spontaneous emission values. A highest generalized-optical signal-to-noise ratio value is determined by comparing the first generalized-optical signal-to-noise ratio value and the at least one second generalized-optical signal-to-noise ratio value.
    Type: Application
    Filed: September 1, 2022
    Publication date: March 16, 2023
    Inventors: Ankur Neog, Zhong Pan, Baranidhar Ramanathan
  • Publication number: 20230085524
    Abstract: Disclosed herein are methods and systems for configuring a raman amplifier. One exemplary system may be provided with a raman amplifier having a plurality of raman pumps and a controller, and a network administration device. The network administration device generates and deploys a first machine learning model and a second machine learning model to the controller of the raman amplifier. A desired gain profile may be automatically assessed using the first machine learning model to determine raman pump configurations for each of the plurality of raman pumps of the raman amplifier. The raman pump configurations for each of the plurality of raman pumps of the raman amplifier may be processed with the second machine learning model to produce an output gain profile. The determined raman pump configurations are deployed only if the output gain profile and the desired gain profile match to within a margin of error.
    Type: Application
    Filed: July 29, 2022
    Publication date: March 16, 2023
    Inventors: Ankur Neog, Baranidhar Ramanathan, Wolfgang Schairer
  • Publication number: 20220416495
    Abstract: Disclosed herein are methods and systems for automatically configuring a raman amplifier. One exemplary system may be provided with the raman amplifier, a user device, and a network administration device. A processor of the network administration device executes instructions that cause the network administration device to generate a machine learning model using machine learning techniques and deploy the machine learning model to a controller of the raman amplifier. When a desired gain profile is communicated from the user device to the controller of the raman amplifier, instructions stored in non-transitory computer readable memory cause a processor of the controller to automatically assess the desired gain profile using the machine learning model to determine raman pump configurations for each of a plurality of raman pumps of the raman amplifier and send the determined raman pump configurations to each of the plurality of raman pumps of the raman amplifier.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 29, 2022
    Inventors: Ankur Neog, Zhong Pan, Baranidhar Ramanathan
  • Patent number: 11451294
    Abstract: A transport network, a node, and a method are disclosed. The transport network, the node, and the method detect a failure of a super channel originating from a sliceable light source that is routed through the transport network, by detecting an optical loss of signal by an optical power monitoring device, in presence or absence of an optical loss of signal of the complete band by at least one photo detector. This information is analyzed with a fault detection algorithm using a patch cable network configuration to determine a fault indication for a failure within the first node. The fault signal indicative of the fault indication is then passed to another node on the first path.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: September 20, 2022
    Assignee: Infinera Corporation
    Inventors: Amit Satbhaiya, Nikhil Kumar Satyarthi, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan
  • Patent number: 11212599
    Abstract: A system and method is disclosed in which circuitry of a first controller of a first node on a first path within a transport network receives a first signal indicating a failure within the first path from a second controller. The first node is an end node of the first path. A first client signal failure clear signal is received from a second node upstream of the first node on the first path. The first client signal failure clear signal indicates that a non-restorable fault has been resolved such that the first path can be considered for carrying data traffic. The non-restorable fault is a failure at the source. Subsequent to receiving the first signal indicating the failure within the first path, a backward defect indication clear signal is transmitted to the second node, the backward defect indication clear signal indicating an absence of a failure in the first path.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: December 28, 2021
    Assignee: Infinera Corporation
    Inventors: Nikhil Kumar Satyarthi, Amit Satbhaiya, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan, Dileep Padala, Dinesh Kumar Prakasam
  • Patent number: 10824351
    Abstract: Systems and methods are described in which circuitry of a first controller of a first node receives a first signal indicating an optical loss of signal within the first path. Circuitry of a second controller of the first node on the first path within a transport network generates a second signal indicating a failure within the first path. The first controller accessing a network topology database determines that restoration of the first path would be ineffective due to there being no alternate path, and signals a second node downstream in the first path with the second signal indicating the failure within the first path, and a third signal indicating that restoration of the first path would be ineffective due to there being no alternate path.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: November 3, 2020
    Assignee: Infinera Corporation
    Inventors: Nikhil Kumar Satyarthi, Amit Satbhaiya, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan
  • Patent number: 10797824
    Abstract: Methods, nodes and control modules are disclosed. In the method, circuitry of a first node in a mesh network converts an optical layer in a working path between the first node and a second node, to a data stream in a digital layer. The working path carries data traffic from the first node to the second node in the optical layer of the mesh network when there is no failure in the working path. Circuitry of the first node in the mesh network detects a failure in the working path due to detection of an error in the data stream in the digital layer. The circuitry of the first node establishes, through transmission of at least one signal from the first node to the second node, a restoration path in the optical layer based on, at least in part, detection of the error in the data stream in the digital layer.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: October 6, 2020
    Assignee: Infinera Corporation
    Inventors: Rajan Rao, Ashok Kunjidhapatham, Ashwini Kumar Bhat, Baranidhar Ramanathan, Sanjeev Ramachandran, Nikhil Satyarhi, Saratchandar Adayapalam Viswanathan, Biao Lu, Amit Satbhaiya, Ramnarayan Srinivasan, Ramakrishna Pratapa
  • Publication number: 20200112365
    Abstract: A transport network, a node, and a method are disclosed. The transport network, the node, and the method detect a failure of a super channel originating from a sliceable light source that is routed through the transport network, by detecting an optical loss of signal by an optical power monitoring device, in presence or absence of an optical loss of signal of the complete band by at least one photo detector. This information is analyzed with a fault detection algorithm using a patch cable network configuration to determine a fault indication for a failure within the first node. The fault signal indicative of the fault indication is then passed to another node on the first path.
    Type: Application
    Filed: October 4, 2018
    Publication date: April 9, 2020
    Inventors: Amit Satbhaiya, Nikhil Kumar Satyarthi, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan
  • Patent number: 10602246
    Abstract: Embodiments herein include methods and apparatuses for providing optical channel protection by a switching controller in an optical networking system. The switching controller may receive, from a light module, a digital fault status message that indicates whether a digital frame demodulated from an optical signal include a fault. The switching controller may receive from an Optical Supervisory Channel (OSC) module, an Optical Layer Defect Propagation (OLDP) status message that indicates an OSC status of the optical signal on a current optical path. The switching controller may receive, from an Optical Add Drop Multiplexer (OADM) module, an optical power status message that indicates a measured power level of the optical signal on the optical path. Based on at least one of the OLDP status, the optical power status, or the digital fault status message, the switching controller may determine the optical path as a working path or a protecting path.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 24, 2020
    Assignee: Infinera Corporation
    Inventors: Rajan Rao, Nikhil Kumar Satyarthi, Ashok Kunjidhapatham, Baranidhar Ramanathan, Biao Lu
  • Publication number: 20200059712
    Abstract: A system and method is disclosed in which circuitry of a first controller of a first node on a first path within a transport network receives a first signal indicating a failure within the first path from a second controller. The first node is an end node of the first path. A first client signal failure clear signal is received from a second node upstream of the first node on the first path. The first client signal failure clear signal indicates that a non-restorable fault has been resolved such that the first path can be considered for carrying data traffic. The non-restorable fault is a failure at the source. Subsequent to receiving the first signal indicating the failure within the first path, a backward defect indication clear signal is transmitted to the second node, the backward defect indication clear signal indicating an absence of a failure in the first path.
    Type: Application
    Filed: August 17, 2018
    Publication date: February 20, 2020
    Inventors: Nikhil Kumar Satyarthi, Amit Satbhaiya, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan, Dileep Padala, Dinesh Kumar Prakasam
  • Patent number: 10447420
    Abstract: Embodiments include methods and apparatuses for providing at least one signaling indication of a super-channel by a power controller in a Wavelength Division Multiplexing (WDM) system. The power controller may receive a service provisioning and a lock state from a network management entity. The power controller may receive, from an optical fabric unit, a fabric state that indicates whether a pass-band of the super-channel is provisioned. The power controller may receive the power level of the super-channel from a power monitoring unit. Based on the power level and attenuation level of the super-channel, the power controller may determine a ramp state that indicates whether the power level reached to a predetermined power. The power controller may determine an alarm state based on the power level. The power controller may determine the signaling indication based on the service provisioning, lock, fabric, ramp, and alarm states.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 15, 2019
    Assignee: Infinera Corporation
    Inventors: Rajan Rao, Nikhil Kumar Satyarthi, Parveen Kumar Gupta, Sowmya Mahadevaiah, Sanjeev Ramachandran, Baranidhar Ramanathan, Ramakrishnan Subramanian
  • Publication number: 20190007131
    Abstract: Systems and methods are described in which circuitry of a first controller of a first node receives a first signal indicating an optical loss of signal within the first path. Circuitry of a second controller of the first node on the first path within a transport network generates a second signal indicating a failure within the first path. The first controller accessing a network topology database determines that restoration of the first path would be ineffective due to there being no alternate path, and signals a second node downstream in the first path with the second signal indicating the failure within the first path, and a third signal indicating that restoration of the first path would be ineffective due to there being no alternate path.
    Type: Application
    Filed: August 17, 2018
    Publication date: January 3, 2019
    Inventors: Nikhil Kumar Satyarthi, Amit Satbhaiya, Sanjeev Ramachandran, Rajan Rao, Baranidhar Ramanathan
  • Publication number: 20180351694
    Abstract: Methods, nodes and control modules are disclosed. In the method, circuitry of a first node in a mesh network converts an optical layer in a working path between the first node and a second node, to a data stream in a digital layer. The working path carries data traffic from the first node to the second node in the optical layer of the mesh network when there is no failure in the working path. Circuitry of the first node in the mesh network detects a failure in the working path due to detection of an error in the data stream in the digital layer. The circuitry of the first node establishes, through transmission of at least one signal from the first node to the second node, a restoration path in the optical layer based on, at least in part, detection of the error in the data stream in the digital layer.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 6, 2018
    Inventors: Rajan Rao, Ashok Kunjidhapatham, Ashwini Kumar Bhat, Baranidhar Ramanathan, Sanjeev Ramachandran, Nikhil Satyarhi, Saratchandar Adayapalam Viswanathan, Biao Lu
  • Patent number: 9853726
    Abstract: This disclosure relates to optical line system equipment, which enables wavelength addition for long haul transmission. The system is configured to prevent contention of wavelengths added into a multiplexer. For example, an optical wavelength combiner, such as a multiplexer, may include components that are configured to detect potential collisions between existing wavelengths and a newly added wavelength, and block the addition of the conflicting wavelength while alerting the operator.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: December 26, 2017
    Assignee: Infinera Corporation
    Inventors: Saurabh Kumar, Sanjeev Ramachandran, Baranidhar Ramanathan
  • Publication number: 20170353264
    Abstract: Embodiments include methods and apparatuses for providing at least one signaling indication of a super-channel by a power controller in a Wavelength Division Multiplexing (WDM) system. The power controller may receive a service provisioning and a lock state from a network management entity. The power controller may receive, from an optical fabric unit, a fabric state that indicates whether a pass-band of the super-channel is provisioned. The power controller may receive the power level of the super-channel from a power monitoring unit. Based on the power level and attenuation level of the super-channel, the power controller may determine a ramp state that indicates whether the power level reached to a predetermined power. The power controller may determine an alarm state based on the power level. The power controller may determine the signaling indication based on the service provisioning, lock, fabric, ramp, and alarm states.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 7, 2017
    Applicant: Infinera Corporation
    Inventors: Rajan Rao, Nikhil Kumar Satyarthi, Parveen Kumar Gupta, Sowmya Mahadevaiah, Sanjeev Ramachandran, Baranidhar Ramanathan, Ramakrishnan Subramanian