Patents by Inventor Barbara J. Schmid

Barbara J. Schmid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240148307
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Robert W. Stadler, Xusheng Zhang, Vinod Sharma, James D. Reinke, Barbara J. Schmid
  • Patent number: 11883179
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: January 30, 2024
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Xusheng Zhang, Vinod Sharma, James D. Reinke, Barbara J. Schmid
  • Publication number: 20200383596
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Robert W. STADLER, Xusheng ZHANG, Vinod SHARMA, James D. REINKE, Barbara J. SCHMID
  • Patent number: 10828494
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: November 10, 2020
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Patent number: 10750970
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 25, 2020
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Xusheng Zhang, Vinod Sharma, James D. Reinke, Barbara J. Schmid
  • Publication number: 20190117104
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Robert W. STADLER, Xusheng ZHANG, Vinod SHARMA, James D. REINKE, Barbara J. SCHMID
  • Patent number: 10154794
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 18, 2018
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Xusheng Zhang, Vinod Sharma, James D. Reinke, Barbara J. Schmid
  • Publication number: 20180085579
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 29, 2018
    Inventors: Scott A. HARELAND, James K. CARNEY, James D. REINKE, Jon D. SCHELL, Barbara J. SCHMID
  • Patent number: 9844675
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 19, 2017
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Publication number: 20170312514
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Publication number: 20150305641
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 29, 2015
    Inventors: Robert W. STADLER, Xusheng ZHANG, Vinod SHARMA, James D. REINKE, Barbara J. SCHMID
  • Patent number: 5755742
    Abstract: A lead integrity measurement system for a cardiac pacemaker/cardioverter/defibrillator (PCD) of the type comprising an implantable pulse generator (IPG) and a lead system including one or more pacing leads each having a proximal end coupled to a pacing terminal of the IPG and a distal end with at least one pace/sense electrode in contact with a patient's heart and a pair of defibrillation leads coupled to defibrillation terminals of the IPG and defibrillation electrodes implanted in relation to the patient's heart. In a lead impedance test mode, the terminal of a selected defibrillation lead under test is coupled to system ground, and an excitation voltage is applied in an excitation path from a force lead terminal selected from the pacing leads.
    Type: Grant
    Filed: November 5, 1996
    Date of Patent: May 26, 1998
    Assignee: Medtronic, Inc.
    Inventors: Robert J. Schuelke, Barbara J. Schmid, Jonathan R. Gering