Patents by Inventor Barbara Paldus

Barbara Paldus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6959023
    Abstract: A tunable laser and laser tuning method based on the use of a tunable etalon in reflection as a mirror within a laser cavity. The laser emission wavelength is not necessarily at a wavelength of peak etalon reflectivity. A preferred embodiment makes use of a microelectromechanical etalon to tune an external cavity semiconductor laser.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: October 25, 2005
    Assignee: Picarro, Inc.
    Inventors: Jinchun Xie, Alexandre Katchanov, Barbara A. Paldus
  • Publication number: 20050175045
    Abstract: A tunable laser and laser tuning method, based on the interaction of a spectrally dependent beam distortion and a spatial filter within a laser cavity. One embodiment of this laser is an external cavity semiconductor laser in which broad tunability is obtained by the insertion of an acousto-optic tunable filter (AOTF) into the laser cavity such that the intra-cavity laser beam passes through the AOTF in zeroth order.
    Type: Application
    Filed: April 13, 2005
    Publication date: August 11, 2005
    Inventors: Barbara Paldus, Jinchun Xie, Robert Lodenkamper, David Adams, Eric Crosson, Alexander Katchanov, Grzegorz Pakulski, Chris Rella, Bruce Richman
  • Publication number: 20050134836
    Abstract: A cavity enhanced optical detector comprising: i) a source of continuous wave laser light; ii) a high finesse resonant cavity comprising at least three spaced apart, high-reflectivity mirrors positioned to receive light from the laser light source; iii) at least one photo-detector for measuring the extinction coefficient of an analyte that is positioned in the resonant cavity; and iv) one or more additional photo-detectors for measuring the intensity of fluorescence emission and/or Raman scattering from the analyte.
    Type: Application
    Filed: December 17, 2003
    Publication date: June 23, 2005
    Inventors: Barbara Paldus, Robert Provencal, Alexander Katchanov
  • Publication number: 20050094158
    Abstract: An apparatus for cavity enhanced optical detection comprising: a) a source of optical radiation b) a resonant optical cavity which provides a round trip path for said optical radiation the cavity comprising: i) a plurality of mirrors, the first mirror being an input mirror which receives the optical radiation and inputs it into the cavity; ii) a flow cell positioned within said cavity, said flow cell comprising at least a first analysis channel which accommodates a flow of analyte fluid there through, iii) a second mirror, which second mirror receives the radiation from the optical source after its passage through both said input mirror and said analysis channel and reflects said received radiation.
    Type: Application
    Filed: October 31, 2003
    Publication date: May 5, 2005
    Inventors: Barbara Paldus, Alexander Katchanov, Robert Lodenkamper
  • Publication number: 20050008045
    Abstract: A tunable laser and laser tuning method based on the use of a tunable etalon in reflection as a mirror within a laser cavity and forming an end reflective surface thereof. The laser emission wavelength is not necessarily at a wavelength of peak etalon reflectivity. A preferred embodiment makes use of a microelectromechanical etalon to tune an external cavity semiconductor.
    Type: Application
    Filed: August 3, 2004
    Publication date: January 13, 2005
    Inventors: Jinchun Xie, Alexandre Katchanov, Barbara Paldus
  • Publication number: 20040202223
    Abstract: Stable single mode operation of an external cavity semiconductor laser is obtained by a laser control method that monitors at least one optical beam which is generated by reflection from a wavelength selective element within the laser cavity. The method of the present invention provides stable single mode operation and significantly decreases the mode hop rate, because the signal obtained by reflection from a wavelength selective element within the laser cavity provides a clear indication of an impending mode hop.
    Type: Application
    Filed: April 8, 2003
    Publication date: October 14, 2004
    Inventors: Eric Crosson, Serguei Koulikov, Barbara A. Paldus, Chris W. Rella
  • Patent number: 6792010
    Abstract: According to the present invention, laser performance is improved by appropriately matching the spectral periods of various etalons within the laser cavity. A first embodiment of the invention is a discretely tunable external cavity semiconductor laser where a grid fixing etalon is present in the laser cavity, the grid fixing etalon free spectral range (FSR) is a whole number multiple of the laser cavity FSR, and the grid fixing etalon FSR is a whole number multiple of the chip etalon FSR. A second embodiment of the invention is a fixed wavelength external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR, and a mode suppressing etalon is inserted into the laser cavity such that the mode suppressing etalon FSR is a whole number multiple of the chip etalon FSR. A third embodiment of the invention is a tunable external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: September 14, 2004
    Assignee: Picarro, Inc.
    Inventors: Serguei Koulikov, Grzegorz Pakulski, Barbara A. Paldus, Chris W. Rella, Jinchun Xie
  • Publication number: 20040165641
    Abstract: An optical fiber transmitter for emitting an information-carrying laser beam comprises an optically or electrically pumped single mode MQW (multi-quantum well) semiconductor amplifying mirror as a gain medium and a separate external reflector to form a cavity. The external cavity length defines a comb of optical modes, all or a subset of which correspond to channel wavelengths of an optical telecommunications system having plural optical channels. The semiconductor gain element has a homogeneously broadened gain region; a tuning arrangement tunes the laser from mode to mode across the gain region, thereby selecting each one of the plural optical channels. When the maximum gain bandwidth is less than mode-to-mode spacing defined by the cavity, the tuning arrangement includes a means of altering the temperature of the amplifying mirror, thereby translating the frequency of the gain peak from one mode to another.
    Type: Application
    Filed: February 2, 2004
    Publication date: August 26, 2004
    Inventors: Arnaud Garnache, Daniele Romanini, Marc Levenson, Robert Lodenkamper, Frederic Stoeckel, Alexandre Katchanov, Guido Knippels, Barbara Paldus, Christopher Rella, Bruce Richman
  • Publication number: 20040120364
    Abstract: According to the present invention, laser performance is improved by appropriately matching the spectral periods of various etalons within the laser cavity. A first embodiment of the invention is a discretely tunable external cavity semiconductor laser where a grid fixing etalon is present in the laser cavity, the grid fixing etalon free spectral range (FSR) is a whole number multiple of the laser cavity FSR, and the grid fixing etalon FSR is a whole number multiple of the chip etalon FSR. A second embodiment of the invention is a fixed wavelength external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR, and a mode suppressing etalon is inserted into the laser cavity such that the mode suppressing etalon FSR is a whole number multiple of the chip etalon FSR. A third embodiment of invention is a tunable external cavity semiconductor laser where the chip etalon FSR is a whole number multiple of the laser cavity FSR.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Serguei Koulikov, Grzegorz Pakulski, Barbara A. Paldus, Chris W. Rella, Jinchun Xie
  • Patent number: 6741629
    Abstract: An optical fiber transmitter comprises an optically pumped single mode MQW VECSEL for emitting an information-carrying laser beam and has an external cavity length defining a comb of optical modes, each mode corresponding to a channel wavelength of an optical telecommunications system having plural optical channels. A semiconductor structure of the VECSEL has an optical-pump-excited multiple quantum well (MQW) homogeneously broadened gain region active over a band which is less than mode-to-mode spacing, the gain region being tunable to hop from a first mode to an adjacent second mode. A tuning arrangement tunes the VECSEL from mode to mode thereby to select each one of the plural optical channels. An optical modulator adds modulation to a beam emitting from the laser to provide the information-carrying laser beam, and a coupler couples the information-carrying laser beam into an optical fiber of the optical telecommunications system.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: May 25, 2004
    Assignee: Blueleaf, Inc.
    Inventors: Arnaud Garnache, Alexandre Katchanov, Barbara Paldus, Daniele Romanini, Frederic Stoeckel
  • Patent number: 6711203
    Abstract: An optical fiber transmitter for emitting an information-carrying laser beam comprises an optically or electrically pumped single mode MQW (multi-quantum well) semiconductor amplifying mirror as a gain medium and a separate external reflector to form a cavity. The external cavity length defines a comb of optical modes, all or a subset of which correspond to channel wavelengths of an optical telecommunications system having plural optical channels. The semiconductor gain element has a homogeneously broadened gain region; a tuning arrangement tunes the laser from mode to mode across the gain region, thereby selecting each one of the plural optical channels. When the maximum gain bandwidth is less than mode-to-mode spacing defined by the cavity, the tuning arrangement includes a means of altering the temperature of the amplifying mirror, thereby translating the frequency of the gain peak from one mode to another.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: March 23, 2004
    Assignee: BlueLeaf, Inc.
    Inventors: Arnaud Garnache, Daniele Romanini, Frederic Stoeckel, Alexandre Katchanov, Guido Knippels, Barbara Paldus, Christopher Rella, Bruce Richman, Marc Levenson, Robert Lodenkamper
  • Publication number: 20030161361
    Abstract: A laser tuning mechanism which embodies “spectrally dependent spatial filtering” (SDSF) and contemplates two key elements of the tuning mechanism. The first element of the SDSF tuning mechanism is a spectrally dependent beam distortion (i.e. alteration of the amplitude and/or phase profile of the beam) provided by an SDSF tuning element in a laser cavity. The second element of the SDSF tuning mechanism is an intracavity spatial filter which makes the round trip cavity loss a sensitive function of both beam distortion and cavity alignment. Such a laser can be aligned so that a specific beam distortion, which is provided by the SDSF tuning element at a tunable wavelength, is required to obtain minimum round trip cavity loss, thereby providing tunable laser emission. A preferred embodiment of the SDSF tuning mechanism is an external cavity semiconductor laser having a zeroth order acousto-optic tuning element.
    Type: Application
    Filed: December 2, 2002
    Publication date: August 28, 2003
    Inventors: Barbara Paldus, Jinchun Xie, Robert Lodenkamper, David M. Adams, Eric Crosson, Alexander Katchanov, Grzegorz Pakulski, Chris W. Rella, Bruce A. Richman, Serguei Koulikov
  • Patent number: 6611546
    Abstract: An optical fiber transmitter for emitting an information-carrying laser beam comprises an optically or electrically pumped single mode MQW (multi quantum well) semiconductor amplifying mirror as a gain medium and a separate external reflector to form a cavity. The external cavity length defines a comb of optical modes, all or a subset of which corresponding to channel wavelengths of an optical telecommunications system having plural optical channels. The semiconductor gain element has a homogeneously broadened gain region; a tuning arrangement tunes the laser from mode to mode across the gain region thereby selecting each one of the plural optical channels. When the maximum gain bandwidth is less than mode-to-mode spacing defined by the cavity, that tuning arrangement comprises a means of altering the temperature of the amplifying mirror, thereby translating the frequency of the gain peak from one mode to another.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: August 26, 2003
    Assignee: BlueLeaf, Inc.
    Inventors: Arnaud Garnache, Daniele Romanini, Frederic Stoeckel, Alexandre Katchanov, Guido Knippels, Barbara Paldus, Christopher Rella, Bruce Richman, Marc Levenson
  • Patent number: 6532071
    Abstract: An analog detection system for determining a ring-down rate or decay rate 1/&tgr; of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: March 11, 2003
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Richard N. Zare, Charles C. Harb, Barbara A. Paldus, Thomas G. Spence
  • Patent number: 6466322
    Abstract: An ring-down spectroscopy instrument comprising a ring-down cavity (RDC) and CW light source (CWLS). The CWLS produces light having components with different polarizations. The ring-down cavity is optically isolated from the light source so that light reflected from the cavity is precluded from perturbing the light source. A frequency shifter shifts a mean frequency of the first component of input light with respect to a mean frequency of the second component of input light by a frequency shift &Dgr;&ngr;. A first detector measures a signal beam with the a polarization. A second detector measures a tracking beam having a second polarization. The frequency shift &Dgr;&ngr; is equal to a difference between a resonant frequency of a first cavity mode with the first polarization and a resonant frequency of a second cavity mode having the second polarization. A threshold detector delivers a trigger pulse to the frequency shifter when an intensity of the signal beam reaches a predetermined value.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: October 15, 2002
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Barbara A. Paldus, Richard N. Zare
  • Patent number: 6452680
    Abstract: Method and system for cavity ring down spectroscopic analysis of non-cavity-filling sample. An interface of a sample (gas, liquid, thin film, bulk solid, etc.) is positioned at a Brewster angle relative to a p-wave polarized light beam propagating in an optical cavity so that substantially no light beam energy is lost by reflection at the interface. The light beam cycles one or more times in the cavity for each of a sequence of selected wavelengths, is extracted from the cavity, and is analyzed to determine an absorption spectrum for the sample. The cavity, except for the sample region may be filled with a solid, optionally dielectrically active and optionally having an electrical field applied thereto to vary the solid's refractive index according to the light beam wavelength used.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: September 17, 2002
    Assignee: Informed Diagnostics, Inc.
    Inventors: Barbara A. Paldus, Charles Harb, Richard N. Zare, Gerard Meijer
  • Patent number: 6377350
    Abstract: Method and system for generating a sequence of two or more light beam central frequencies. A first mirror, in an optical cavity defined by two or more mirrors, is moved to a sequence of two or more locations relative to a second mirror in the cavity. The first mirror location is dithered relative to the second mirror for each location in the sequence to produce a light beam having a dithered sequence of cavity frequencies that are related to longitudinal mode resonant frequencies for the cavity. Alternatively, frequency locking is implemented for each of the sequence of central frequencies. The light beam may be passed through a sample within the cavity for spectroscopic measurements or may be extracted from an empty cavity to provide a sequence of light beam frequencies for a subsequent application.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: April 23, 2002
    Assignee: Informal Diagnostics, Inc
    Inventors: Barbara A. Paldus, Charles Harb
  • Publication number: 20010003482
    Abstract: An analog detection system for determining a ring-down rate or decay rate 1/&tgr; of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
    Type: Application
    Filed: January 4, 2001
    Publication date: June 14, 2001
    Inventors: Richard N. Zare, Charles C. Harb, Barbara A. Paldus, Thomas G. Spence
  • Patent number: 6233052
    Abstract: An analog detection system for determining a ring-down rate or decay rate 1/&tgr; of an exponentially decaying ring-down beam issuing from a lifetime or ring-down cavity during a ring-down phase. Alternatively, the analog detection system determines a build-up rate of an exponentially growing beam issuing from the cavity during a ring-up phase. The analog system can be employed in continuous wave cavity ring-down spectroscopy (CW CRDS) and pulsed CRDS (P CRDS) arrangements utilizing any type of ring-down cavity including ring-cavities and linear cavities.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: May 15, 2001
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Richard N. Zare, Charles C. Harb, Barbara A. Paldus, Thomas G. Spence
  • Patent number: 6094267
    Abstract: A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: July 25, 2000
    Assignee: The Board of Trustees of the Leland Stanford Jr. University
    Inventors: Marc D. Levenson, Barbara A. Paldus, Richard N. Zare