Patents by Inventor Barbara Sharp

Barbara Sharp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9900478
    Abstract: Various techniques are disclosed for providing a device attachment configured to releasably attach to and provide infrared imaging functionality to mobile phones or other portable electronic devices. For example, a device attachment may include a housing with a tub on a rear surface thereof shaped to at least partially receive a user device, an infrared sensor assembly disposed within the housing and configured to capture thermal infrared image data, and a processing module communicatively coupled to the infrared sensor assembly and configured to transmit the thermal infrared image data to the user device. Thermal infrared image data may be captured by the infrared sensor assembly and transmitted to the user device by the processing module in response to a request transmitted by an application program or other software/hardware routines running on the user device.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: February 20, 2018
    Assignee: FLIR SYSTEMS, INC.
    Inventors: Michael Fox, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Jeffrey D. Frank, Andrew C. Teich, Dwight Dumpert, Gerald W. Blakeley
  • Patent number: 9848134
    Abstract: Various techniques are provided for implementing, operating, and manufacturing infrared imaging devices using integrated circuits. In one example, a system includes a focal plane array (FPA) integrated circuit comprising an array of infrared sensors adapted to image a scene, a plurality of active circuit components, a first metal layer disposed above and connected to the circuit components, a second metal layer disposed above the first metal layer and connected to the first metal layer, and a third metal layer disposed above the second metal layer and below the infrared sensors. The third metal layer is connected to the second metal layer and the infrared sensors. The first, second, and third metal layers are the only metal layers of the FPA between the infrared sensors and the circuit components. The first, second, and third metal layers are adapted to route signals between the circuit components and the infrared sensors.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: December 19, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Brian Simolon, Eric A. Kurth, Steve Barskey, Mark Nussmeier, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20170359526
    Abstract: Various techniques are disclosed for providing an infrared imaging module that exhibits a small form factor and may be used with one or more portable devices. Such an infrared imaging module may be implemented with a housing that includes electrical connections that may be used to electrically connect various components of the infrared imaging module. In addition, various techniques are disclosed for providing system architectures for processing modules of infrared imaging modules. In one example, a processing module of an infrared imaging module includes a first interface adapted to receive captured infrared images from an infrared image sensor of the infrared imaging module. The processing module may also include a processor adapted to perform digital infrared image processing on the captured infrared images to provide processed infrared images. The processing module may also include a second interface adapted to pass the processed infrared images to a host device.
    Type: Application
    Filed: July 31, 2017
    Publication date: December 14, 2017
    Inventors: Pierre Boulanger, Theodore R. Hoelter, Barbara Sharp, Eric A. Kurth
  • Patent number: 9843742
    Abstract: Various techniques are provided to capture one or more thermal image frames using an infrared sensor array that is fixably positioned to substantially de-align rows and columns of infrared sensors. In one example, an infrared imaging system includes an infrared sensor array comprising a plurality of infrared sensors arranged in rows and columns and adapted to capture a thermal image frame of a scene exhibiting at least one substantially horizontal or substantially vertical feature. The infrared imaging system also includes a housing. The infrared sensor array is fixably positioned within the housing to substantially de-align the rows and columns from the feature while the thermal image frame is captured.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: December 12, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Stanley H. Garrow, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth, Malin Ingerhed
  • Patent number: 9819880
    Abstract: Various techniques are provided for systems and methods to process images to reduce consumption of an available output dynamic range by the sky in images. For example, according to one or more embodiments of the disclosure, a region or area in images that may correspond to the sky may be identified based on the location of the horizon in the images. A distribution of irradiance levels in the identified sky region may be analyzed to determine a dynamic range attributable to the sky region. A transfer function that compresses the dynamic range attributable to the sky region may be generated and applied so that the sky in the images may be suppressed, thereby advantageously preserving more dynamic range for terrestrial objects and other objects of interest in the images.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: November 14, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Nicholas Högasten, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Publication number: 20170318237
    Abstract: Various techniques are provided for implementing an infrared imaging system. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors. The bias voltage is selected from a range of approximately 0.2 volts to approximately 0.7 volts. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9807319
    Abstract: Wearable systems with thermal imaging capabilities may be provided for detecting the presence and location of persons or animals in an environment surrounding the system in accordance with an embodiment. A wearable system may include a wearable structure such as a helmet with a plurality of imaging modules mounted to the wearable structure. An imaging module may include one or more imaging components such as infrared imaging modules and visible light cameras. Thermal images captured using the infrared imaging modules may be used to detect the presence of a person in the thermal images. The wearable imaging system may include one or more alert components that alert the wearer when a person is detected in the thermal images. The alert components may be used to generate a location-specific alert that alerts the wearer to the location of the detected person. A wearable imaging system may be a multidirectional threat monitoring helmet.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: October 31, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Jeffrey D. Frank, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Eric A. Kurth, Barbara Sharp
  • Patent number: 9756264
    Abstract: Various techniques are provided to identify anomalous pixels in images captured by imaging devices. In one example, an infrared image frame is received. The infrared image frame is captured by a plurality of infrared sensors based on infrared radiation passed through an optical element. A pixel of the infrared image frame is selected. A plurality of neighborhood pixels of the infrared image frame are selected. Values of the selected pixel and the neighborhood pixels are processed to determine whether the value of the selected pixel exhibits a disparity in relation to the neighborhood pixels that exceeds a maximum disparity associated with a configuration of the optical element and the infrared sensors. The selected pixel is selectively designated as an anomalous pixel based on the processing.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: September 5, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Theodore R. Hoelter, Nicholas Högasten, Malin Ingerhed, Mark Nussmeier, Eric A. Kurth, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9756262
    Abstract: Techniques are disclosed for systems and methods using small form factor infrared imaging modules to monitor aspects of a power system. A system may include one or more infrared imaging modules, a processor, a memory, a display, a communication module, and modules to control components of a power system. Infrared imaging modules may be mounted on, installed in, or otherwise integrated with a power system having one or more power system components. The infrared imaging modules may be configured to capture thermal images of portions of the power system. Various thermal image analytics and profiling may be performed on the captured thermal images to determine the operating conditions and temperatures of portions of the power system. Monitoring information may be generated based on the determined conditions and temperatures and then presented to a user of the power system.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 5, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Jeffrey D. Frank, Shawn Jepson, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9723228
    Abstract: Various techniques are disclosed for providing an infrared imaging module that exhibits a small form factor and may be used with one or more portable devices. Such an infrared imaging module may be implemented with a housing that includes electrical connections that may be used to electrically connect various components of the infrared imaging module. In addition, various techniques are disclosed for providing system architectures for processing modules of infrared imaging modules. In one example, a processing module of an infrared imaging module includes a first interface adapted to receive captured infrared images from an infrared image sensor of the infrared imaging module. The processing module may also include a processor adapted to perform digital infrared image processing on the captured infrared images to provide processed infrared images. The processing module may also include a second interface adapted to pass the processed infrared images to a host device.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: August 1, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Pierre Boulanger, Theodore R. Hoelter, Barbara Sharp, Eric A. Kurth
  • Patent number: 9716843
    Abstract: Techniques are disclosed for measurement devices and methods to obtain various physical and/or electrical parameters in an integrated manner. For example, a measurement device may include a housing, an optical emitter, a sensor, a distance measurement circuit, a length measurement circuit, an electrical meter circuit, a display, an infrared imaging module, and/or a non-thermal imaging module. The device may be conveniently carried and utilized by users to perform a series of distance measurements, wire length measurements, electrical parameter measurements, and/or fault inspections, in an integrated manner without using multiple different devices. In one example, electricians may utilize the device to perform installation of electrical wires and/or other tasks at various locations (e.g., electrical work sites). In another example, electricians may utilize the device to view a thermal image of one or more scenes at such locations for locating potential electrical faults.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: July 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Michael Fox, Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9716844
    Abstract: Various techniques are provided for implementing an infrared imaging system, especially for low power and small form factor applications. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. A low-dropout regulator (LDO) is integrated with the FPA and adapted to provide a regulated voltage in response to an external supply voltage. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors in response to the regulated voltage. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9706139
    Abstract: Various techniques are provided for implementing an infrared imaging system. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors. The bias voltage is selected from a range of approximately 0.2 volts to approximately 0.7 volts. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: July 11, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9635285
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: April 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Andrew C. Teich, Nicholas Högasten, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Theodore R. Hoelter, Pierre Boulanger, Barbara Sharp
  • Publication number: 20170078590
    Abstract: Techniques using small form factor infrared imaging modules are disclosed. An imaging system may include visible spectrum imaging modules, infrared imaging modules, and other modules to interface with a user and/or a monitoring system. Visible spectrum imaging modules and infrared imaging modules may be positioned in proximity to a scene that will be monitored while visible spectrum-only images of the scene are either not available or less desirable than infrared images of the scene. Imaging modules may be configured to capture images of the scene at different times. Image analytics and processing may be used to generate combined images with infrared imaging features and increased detail and contrast. Triple fusion processing, including selectable aspects of non-uniformity correction processing, true color processing, and high contrast processing, may be performed on the captured images. Control signals based on the combined images may be presented to a user and/or a monitoring system.
    Type: Application
    Filed: September 19, 2016
    Publication date: March 16, 2017
    Inventors: Nicholas Högasten, Dwight Dumpert, Theodore R. Hoelter, Jeffrey S. Scott, Katrin Strandemar, Mark Nussmeier, Eric A. Kurth, Pierre Boulanger, Barbara Sharp
  • Patent number: 9538038
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: January 3, 2017
    Assignee: FLIR Systems, Inc.
    Inventors: Weilming Sieh, David W. Dart, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Publication number: 20160366345
    Abstract: Various techniques are provided for implementing an infrared imaging system, especially for low power and small form factor applications. In one example, a system includes a focal plane array (FPA). The FPA includes an array of infrared sensors adapted to image a scene. A low-dropout regulator (LDO) is integrated with the FPA and adapted to provide a regulated voltage in response to an external supply voltage. The FPA also includes a bias circuit adapted to provide a bias voltage to the infrared sensors in response to the regulated voltage. The FPA also includes a read out integrated circuit (ROIC) adapted to provide signals from the infrared sensors corresponding to captured image frames. Other implementations are also provided.
    Type: Application
    Filed: December 18, 2013
    Publication date: December 15, 2016
    Applicant: FLIR Systems, Inc.
    Inventors: Mark Nussmeier, Eric A. Kurth, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp
  • Patent number: 9521289
    Abstract: Techniques are provided to implement line based processing of thermal images and a flexible memory system. In one example, individual lines of a thermal image frame may be provided to an image processing pipeline. Image processing operations may be performed on the individual lines in stages of the image processing pipeline. A memory system may be used to buffer the individual lines in the pipeline stages. In another example, a memory system may be used to send and receive data between various components without relying on a single shared bus. Data transfers may be performed between different components and different memories of the memory system using a switch fabric to route data over different buses. In another example, a memory system may support data transfers using different clocks of various components, without requiring the components and the memory system to all be synchronized to the same clock source.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: December 13, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: David W. Dart, Weilming Sieh, Nicholas Högasten, Theodore R. Hoelter, Katrin Strandemar, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Patent number: 9473681
    Abstract: A housing for an infrared camera module may be implemented with a substantially non-metal cover configured to substantially or completely enclose various components of an infrared imaging device. A metal layer may be disposed on various interior and/or exterior surfaces of the cover. Such implementations may be used to reduce the effects of various environmental conditions which may otherwise adversely affect the performance of the infrared imaging device. In addition, one or more conductive traces may be built into the housing and/or on interior surfaces of the housing to facilitate the passing of signals from components of the infrared imaging device such as infrared sensors, read out circuitry, a temperature measurement component, and/or other components. One or more fiducial markers may be provided to align various components of the infrared camera module during manufacture.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 18, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Theodore R. Hoelter, Joseph Kostrzewa, Pierre Boulanger, Barbara Sharp, Eric A. Kurth
  • Patent number: D774584
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: December 20, 2016
    Assignee: FLIR Systems, Inc.
    Inventors: Michael D. Walters, Theodore R. Hoelter, Barbara Sharp