Patents by Inventor Barrett Bartell

Barrett Bartell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10484093
    Abstract: Feeding a plurality of antenna elements of an array antenna, involves receiving at a photonic substrate at least one transmit modulated optical carrier (TMOC) signal. The TMOC signal is communicated to an array level photonic integrated circuit (ALPIC) disposed on the photonic substrate where one or more optical processing operations are performed involving the TMOC signal to obtain a plurality of element-level optical carrier (ELOC) signals. These ELOC signals are communicated from the ALPIC to a plurality of conversion locations distributed on the photonic substrate. Photodetectors respectively provided at the conversion locations convert each of the ELOC signals to an element-level modulated radio frequency (ELMRF) signal. The ELMRF signal are coupled from each photodetector respectively to one of the plurality of antenna elements.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: November 19, 2019
    Assignee: Precision Optical Transceivers Inc.
    Inventors: David M. Calhoun, Barrett Bartell
  • Publication number: 20190229808
    Abstract: Feeding a plurality of antenna elements of an array antenna, involves receiving at a photonic substrate at least one transmit modulated optical carrier (TMOC) signal. The TMOC signal is communicated to an array level photonic integrated circuit (ALPIC) disposed on the photonic substrate where one or more optical processing operations are performed involving the TMOC signal to obtain a plurality of element-level optical carrier (ELOC) signals. These ELOC signals are communicated from the ALPIC to a plurality of conversion locations distributed on the photonic substrate. Photodetectors respectively provided at the conversion locations convert each of the ELOC signals to an element-level modulated radio frequency (ELMRF) signal. The ELMRF signal are coupled from each photodetector respectively to one of the plurality of antenna elements.
    Type: Application
    Filed: January 23, 2018
    Publication date: July 25, 2019
    Inventors: David M. Calhoun, Barrett Bartell
  • Patent number: 10326423
    Abstract: Performance of a photonic integrated circuit (PIC) is improved by using at least one electro-optic (EO) device included in the PIC to perform at least one EO conversion operation whereby an information signal is transitioned from a first signal carrier type to a second signal carrier type different from the first signal carrier type. The first and second signal carrier types are selected from the group consisting of an optical signal carrier and an electrical signal carrier. An operating bandwidth of the PIC is increased by performing electrical signal impedance matching operations directly on the at least one optical media substrate. An improved electrical impedance match is thus obtained between the EO device and a second device exclusive of the PIC.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: June 18, 2019
    Assignee: Precision Integrated Photonics, Inc.
    Inventors: Barrett Bartell, David M. Calhoun
  • Patent number: 7083985
    Abstract: A coplanar waveguide biosensor and methods of use include a coplanar waveguide transmission line and a sample containment structure. The coplanar waveguide transmission line is operable to support the propagation of an electromagnetic signal and includes a signal line and one or more spaced apart ground elements. The signal line is configured to conduct a time-varying voltage, and the one or more ground elements are configured to maintain a time-invariant voltage, a detection region being formed between a portion of the signal line and a portion of at least one of the one or more ground elements. Detection methods are improved through the enhancement of the electric field in the detection region via impedance discontinuities in the signal line and ground elements. The sample containment structure intersects the detection region of the coplanar waveguide transmission line and includes a cavity configured to hold 1 ml or less of sample solution within the detection region.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: August 1, 2006
    Inventors: John J. Hefti, Barrett Bartell, Kurt Kramer, Mark A. Rhodes
  • Publication number: 20030040004
    Abstract: A coplanar waveguide biosensor and methods of use include a coplanar waveguide transmission line and a sample containment structure. The coplanar waveguide transmission line is operable to support the propagation of an electromagnetic signal and includes a signal line and one or more spaced apart ground elements. The signal line is configured to conduct a time-varying voltage, and the one or more ground elements are configured to maintain a time-invariant voltage, a detection region being formed between a portion of the signal line and a portion of at least one of the one or more ground elements. Detection methods are improved through the enhancement of the electric field in the detection region via impedance discontinuities in the signal line and ground elements. The sample containment structure intersects the detection region of the coplanar waveguide transmission line and includes a cavity configured to hold 1 ml or less of sample solution within the detection region.
    Type: Application
    Filed: August 23, 2002
    Publication date: February 27, 2003
    Applicant: Signature BioScience, Inc.
    Inventors: John J. Hefti, Barrett Bartell, Kurt Kramer, Mark A. Rhodes