Patents by Inventor Barry Cushing Stipe

Barry Cushing Stipe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881231
    Abstract: A heat-assisted magnetic recording (HAMR) head has a slider with a gas-bearing-surface (GBS). The slider supports a near-field transducer (NFT) and a main magnetic pole that has a step or recess in the NFT-facing surface near the GBS that contains plasmonic material. A thermal shunt is located between the NFT and the main pole to allow heat to be transferred away from the optical spot generated by the NFT. The NFT-facing surface of the main pole that is recessed from the step away from the GBS is in contact with the thermal shunt, and the thermal shunt is in contact with the plasmonic material in the step in the back region recessed from the GBS, so there is no increase in the spacing between the NFT and a large portion of the main pole.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: January 23, 2024
    Assignee: Western Digital Technologies, Inc.
    Inventors: Takuya Matsumoto, Barry Cushing Stipe, Muhammad Asif Bashir
  • Publication number: 20230245681
    Abstract: A heat-assisted magnetic recording (HAMR) head has a slider with a gas-bearing-surface (GBS). The slider supports a near-field transducer (NFT) and a main magnetic pole that has a step or recess in the NFT-facing surface near the GBS that contains plasmonic material. A thermal shunt is located between the NFT and the main pole to allow heat to be transferred away from the optical spot generated by the NFT. The NFT-facing surface of the main pole that is recessed from the step away from the GBS is in contact with the thermal shunt, and the thermal shunt is in contact with the plasmonic material in the step in the back region recessed from the GBS, so there is no increase in the spacing between the NFT and a large portion of the main pole.
    Type: Application
    Filed: December 14, 2022
    Publication date: August 3, 2023
    Applicant: Western Digital Technologies, Inc.
    Inventors: Takuya MATSUMOTO, Barry Cushing STIPE, Muhammad ASIF BASHIR
  • Patent number: 11532329
    Abstract: A heat-assisted magnetic recording (HAMR) head has a slider with a gas-bearing-surface (GBS). The slider supports a near-field transducer (NFT) and a main magnetic pole that has a step or recess in the NFT-facing surface near the GBS that contains plasmonic material. A thermal shunt is located between the NFT and the main pole to allow heat to be transferred away from the optical spot generated by the NFT. The NFT-facing surface of the main pole that is recessed from the step away from the GBS is in contact with the thermal shunt, and the thermal shunt is in contact with the plasmonic material in the step in the back region recessed from the GBS, so there is no increase in the spacing between the NFT and a large portion of the main pole.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: December 20, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Takuya Matsumoto, Barry Cushing Stipe, Muhammad Asif Bashir
  • Patent number: 11514946
    Abstract: A heat-assisted magnetic recording (HAMR) disk drive uses a semiconductor laser mounted on a slider to deliver light to a near-field transducer (NFT) via a waveguide located inside the slider. The waveguide includes a core and cladding material that is transparent to the laser light and surrounds the core. Layers of stray light absorption material are located inside the slider on opposite edges of the waveguide core in the same plane as the core and on opposite sides of the waveguide core in planes spaced from the plane of the core. Portions of the waveguide cladding material are located between the waveguide core and the stray light absorption layers. The stray light absorption layers absorb light that leaks into the cladding material and substantially reduces stray light reflected to the laser to prevent undesirable laser power fluctuation.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: November 29, 2022
    Assignee: Western Digital Technologies, Inc.
    Inventors: Norman Shi, Takuya Matsumoto, Barry Cushing Stipe
  • Patent number: 11127421
    Abstract: A heat-assisted magnetic recording (HAMR) write head has a write pole with a chemically-passivated end that substantially prevents oxidation and thus improves corrosion resistance of the write pole. The write pole and near-field transducer (NFT) are supported on a slider and have their ends in a window region of the slider's disk-facing surface. The outer surface region of the write pole is chemically-passivated, preferably by exposure to a nitrogen plasma. The nitrogen plasma has no effect on the NFT end or on the magnetoresistive read head, which is protected because it is located in a non-window region of the slider's disk-facing surface. An optically transparent protective film is formed in the window over the passivated write pole end and NFT end.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: September 21, 2021
    Assignee: Western Digital Technologies, Inc.
    Inventors: Krisda Siangchaew, Barry Cushing Stipe, Nattaporn Khamnualthong
  • Publication number: 20210027808
    Abstract: A heat-assisted magnetic recording (HAMR) head for recording data in data tracks of a HAMR disk has a gas-bearing slider that supports a near-field transducer (NFT) and a main magnetic pole formed of two layers. The first main pole layer has a cross-track width at the slider's gas-bearing surface (GBS) that tapers down in the direction towards the NFT where the optical spot is formed. The second main pole layer is located away from the NFT and has a substantially wider cross-track width than the first main pole layer so as to provide sufficient magnetic field for writing. Layers of heat sink material are located on the sloped cross-track sides of the tapered first main pole layer to reduce the temperature and thus the likelihood of oxidation of the main pole layers.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 28, 2021
    Inventors: Takuya Matsumoto, Muhammad Asif Bashir, Hamid Balamane, Petrus VanDerHeijden, Barry Cushing Stipe
  • Patent number: 10482907
    Abstract: A write pole in a heat assisted magnetic recording (HAMR) head for writing to a HAMR medium is provided that includes a recessed part proximal to a near field transducer (NFT) in the HAMR head to protect the write pole from corrosion. The recessed part extends from a portion of a bottom surface of the write pole along a portion of a side of the write pole proximal to the NFT. Within the recessed part, a pole pedestal may be formed of a material that is resistant to corrosion. The pole pedestal may have a rectangular, chamfered, or L-shape. The recessed part may further be induced on the portion of bottom surface of the write pole that extends along the portion of the side of the write pole.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 19, 2019
    Assignee: Western Digital Technologies, Inc.
    Inventors: Mousumi Mani Biswas, Marc A Finot, Barry Cushing Stipe
  • Patent number: 9053731
    Abstract: A system according to one embodiment includes a slider adapted for use in a hard disk drive; and a laser coupled to a slider, wherein electrical contacts of the laser are positioned towards or face the slider, wherein light from the laser is emitted towards the slider, wherein the slider acts as a heat sink for the laser.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: June 9, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Toshiki Hirano, Fu-Ying Huang, Jia-Yang Juang, Barry Cushing Stipe
  • Patent number: 9042209
    Abstract: In a heat-assisted magnetic recording head for use in a hard disk drive, a thermal shunt is positioned between an E-antenna near field transducer (NFT) and a return pole, to draw excess heat away from the NFT region. The thermal shunt comprises two portions separated by a gap that has a trapezoidal cross-section, where the NFT-side of the gap is wider than the return pole-side of the gap.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 26, 2015
    Assignee: HGST Netherlands B.V.
    Inventors: Hamid Balamane, Erhard Schreck, Matteo Staffaroni, Barry Cushing Stipe
  • Publication number: 20150036470
    Abstract: In a heat-assisted magnetic recording head for use in a hard disk drive, a thermal shunt is positioned between an E-antenna near field transducer (NFT) and a return pole, to draw excess heat away from the NFT region. The thermal shunt comprises two portions separated by a gap that has a trapezoidal cross-section, where the NFT-side of the gap is wider than the return pole-side of the gap.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Hamid Balamane, Erhard Schreck, Matteo Staffaroni, Barry Cushing Stipe
  • Patent number: 8902720
    Abstract: A heat-assisted magnetic recording (HAMR) head has a protective film confined to a window of the disk-facing surface of the slider than surrounds the near-field transducer (NFT) and write pole end. Materials for the protective film include TiO2, ZrO2, HfO2, Nb2O5, Ta2O5, Sc2O3, Y2O3, MgO SiN, BN, SiBN and SiBNC. The slider overcoat is located in the non-window region on the slider's disk-facing surface and optionally also on the window region, with the outer surface of the overcoat forming the slider's ABS. An optional recess may be formed on the disk-facing surface of the slider in the window region, with the protective film located in the recess.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 2, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Erhard Schreck, Matteo Staffaroni, Barry Cushing Stipe
  • Patent number: 8854930
    Abstract: Techniques for improving the recording quality during heat assisted magnetic recording (HAMR) by monitoring the power of a source used to heat a storage medium are described. In one example, a source emits electromagnetic radiation. A waveguide transmits the electromagnetic radiation onto a surface of a magnetic media. A photoresistive material is proximately located to the waveguide. The resistance of the photoresistive material varies based on the intensity of electromagnetic radiation propagating through the waveguide. The power of the source is determined by measuring the resistance of the photoresitive material. The power of the source is adjusted based on the determined power.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: October 7, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Thomas William Clinton, Takuya Matsumoto, Shen Ren, Erhard Schreck, Barry Cushing Stipe
  • Patent number: 8842506
    Abstract: A heat-assisted magnetic recording (HAMR) disk drive with a primary waveguide that directs laser light from a laser diode to a near-field transducer includes a second waveguide for sensing the head-disk spacing or fly-height. The second waveguide has a sensor portion that senses the spacing and directs light representative of the spacing to the second waveguide's output end. The second waveguide may include a second or reference portion that is connected to the sensor portion and directs light representative of light input from the laser diode. The combined light from the two portions is directed to the second waveguide's output end. A detector, which may be a photo-diode, is located at the second waveguide's output end and provides a signal that may be coupled to a thermal fly-height controller to increase or decrease the fly-height.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: September 23, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Takuya Matsumoto, Shen Ren, Erhard Schreck, Matteo Staffaroni, Barry Cushing Stipe
  • Patent number: 8842507
    Abstract: A thermally-assisted magnetic recording (HAMR) disk drive uses a thermal sensor to accurately monitor laser power during writing. The disk drive controller, or a separate processor, computes a prediction of the laser power from a history of laser power settings. This predicted value is compared with the measured value from the thermal sensor. If the difference is too large or too small, indicating that the laser power is too high or too low, an error signal is sent to the disk drive controller. The disk drive controller may adjust the laser power setting and initiate a re-write of the data. The predicted laser power is calculated from a convolution of a sequence of current and prior laser power settings with a sequence of coefficients. A calibration process generates the sequence of coefficients when the disk drive is idle or just after it is powered on.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: September 23, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Toshiki Hirano, Lidu Huang, Tetsuo Semba, Barry Cushing Stipe
  • Patent number: 8743667
    Abstract: A thermally-assisted recording (TAR) disk drive operates by turning on write current prior to the application of heat to the recording layer by the near-field transducer (NFT). In a TAR disk drive that uses thermal fly-height control (TFC), TFC power is at a first power level that keeps the write pole at a predetermined fly-height. The write current is then turned on, either simultaneously with or after a reduction in TFC power. The write pole then reaches its optimal fly-height as a result of the combination of write pole protrusion caused by the write current and retraction of the write pole caused by the reduction in TFC power. After the write pole has reached its optimal fly-height, heat is applied to the recording layer by the NFT. The combination of write current and heat causes writing to occur at the optimal write pole fly-height.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 3, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Richard Michael Brockie, Gregory John Parker, Hans Juergen Richter, Erhard Schreck, Barry Cushing Stipe
  • Patent number: 8631561
    Abstract: The present invention generally relates to fabricating a bond pad for electrically connecting a laser diode to a slider and a TAR head in a HDD. The bond pad is deposited on a surface of the head that is perpendicular to the air bearing surface (ABS). The head is diced and lapped to expose the bond pad on a top surface of the head and mounted on a slider. The laser diode and a sub-mount may be coupled to the top surface of the slider—i.e., the surface opposite the ABS—by connecting to the bond pads. Specifically, both the laser diode and the sub-mount have electrodes thereon that are perpendicular to the bond pads. Conductive bonding material is used to bond the laser diode and the sub-mount to the bond pads.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 21, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Christian René Bonhôte, Linden James Crawforth, Toshiki Hirano, Fu-Ying Huang, Neil Leslie Robertson, Barry Cushing Stipe
  • Patent number: 8619515
    Abstract: A thermally-assisted recording (TAR) head for recording data in data tracks of a TAR disk is supported on an air-bearing slider and includes a near-field transducer (NFT) and an optical waveguide that directs laser light to the NFT. The NFT has an output end at the slider's air-bearing surface (ABS) located between the write pole and the optical waveguide in the along-the-track direction. A reflection layer is located on the side of the waveguide opposite the NFT. The scattered light propagated by the waveguide is reflected back by the reflection layer to the NFT. When the distance between the reflection layer and the center of the NFT in the along-the-track direction is adjusted so the phase of the reflected light matches the phase of the plasma oscillation in the NFT, the intensity of the optical near-field is increased. This allows for a reduction in laser power.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 31, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Takuya Matsumoto, Barry Cushing Stipe
  • Patent number: 8619535
    Abstract: An apparatus according to one embodiment includes a near field transducer comprising a conductive metal film; and an optical waveguide for illumination of the near field transducer, a light guiding core layer of the optical waveguide being spaced from the near field transducer by less than about 100 nanometers and greater than 0 nanometers, wherein a longitudinal axis of the optical waveguide is substantially perpendicular to an air bearing surface.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: December 31, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Hamid Balamane, Thomas Dudley Boone, Jr., Neil Leslie Robertson, Barry Cushing Stipe, Timothy Carl Strand
  • Patent number: 8514672
    Abstract: A near-field transducer (NFT) has a primary tip that concentrates the oscillating charge of the NFT onto a substrate, such as magnetic recording medium, to heat regions of the medium, and a secondary tip. The secondary tip is located close to a temperature sensor, such as an electrical conductor whose resistance varies with temperature. The temperature sensor senses heat from the secondary tip and thus properties of the substrate like surface topography and the presence or absence of metallic material. The NFT can be part of a bit-patterned media (BPM) thermally-assisted recording (TAR) disk drive. The temperature sensor output is used to control the write pulses from the disk drive's write head so the magnetic write field is synchronized with the location of the magnetic data islands.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 20, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Michael Konrad Grobis, Barry Cushing Stipe
  • Patent number: 8486289
    Abstract: A method of fabricating a c-aperture or E-antenna plasmonic near field source for thermal assisted recording applications in hard disk drives is disclosed. A c-aperture or E-antenna is built for recording head applications. The technique employs e-beam lithography, partial reactive ion etching and metal refill to build the c-apertures. This process strategy has the advantage over other techniques in the self-alignment of the c-aperture notch to the c-aperture internal diameter, the small number of process steps required, and the precise and consistent shape of the c-aperture notch itself.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: July 16, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Hamid Balamane, Thomas Dudley Boone, Jordan Asher Katine, Barry Cushing Stipe