Patents by Inventor Basil Swanson

Basil Swanson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110154648
    Abstract: This invention provides for an apparatus and a method for detecting the presence of pathogenic agents with sensors containing functionalized nanostructures integrated into circuits on silicon chips. The nanostructures are functionalized with molecular transducers that recognize and bind targeted analytes which are diagnostic of the pathogenic agent of interest. The molecular transducer includes a receptor portion, which binds the analyte, and an anchor portion that attaches to the nanostructure. Upon binding of the analyte, a change in molecular configuration represented by the newly formed receptor-analyte complex creates a force that is transmitted to the nanostructure via the anchor portion of the transducer. The effect of the force transmitted to the nanostructure is to alter its conductivity. The change in conductivity of the nanotube thus represents a signal that indicates the presence of the pathogenic agent of interest.
    Type: Application
    Filed: March 14, 2011
    Publication date: June 30, 2011
    Applicant: NANOMIX, INC.
    Inventors: Jean Christophe Gabriel, George Gruner, Philip Collins, Basil Swanson, Fred Wudl
  • Publication number: 20100231242
    Abstract: This invention provides for an apparatus and a method for detecting the presence of pathogenic agents with sensors containing functionalized nanostructures integrated into circuits on silicon chips. The nanostructures are functionalized with molecular transducers that recognize and bind targeted analytes which are diagnostic of the pathogenic agent of interest. The molecular transducer includes a receptor portion, which binds the analyte, and an anchor portion that attaches to the nanostructure. Upon binding of the analyte, a change in molecular configuration represented by the newly formed receptor-analyte complex creates a force that is transmitted to the nanostructure via the anchor portion of the transducer. The effect of the force transmitted to the nanostructure is to alter its conductivity. The change in conductivity of the nanotube thus represents a signal that indicates the presence of the pathogenic agent of interest.
    Type: Application
    Filed: December 9, 2009
    Publication date: September 16, 2010
    Applicant: Nanomix, Inc.
    Inventors: Jean Christophe Gabriel, George Gruner, Philip Collins, Basil Swanson, Fred Wudl
  • Publication number: 20080003694
    Abstract: The present invention provides a composite material including a substrate having an oxide surface, and, a continuous monolayer on the oxide surface, the monolayer including a silicon atom from a trifunctional alkyl/alkenyl/alkynyl silane group that attaches to the oxide surface, an alkyl/alkenyl/alkynyl portion of at least three carbon atoms, a polyalkylene glycol spacer group, and either a reactive site (e.g., a recognition ligand) or a site resistant to non-specific binding (e.g., a methoxy or the like) at the terminus of each modified SAM. The present invention further provides a sensor element, a sensor array and a method of sensing, each employing the composite material. Patterning is also provided together with backfilling to minimize non-specific binding.
    Type: Application
    Filed: April 18, 2007
    Publication date: January 3, 2008
    Inventors: Basil Swanson, Aaron Anderson, Jurgen Schmidt, Andrew Dattelbaum
  • Publication number: 20070141724
    Abstract: The present invention is directed to a method of forming an immobilized chemical moiety, such as a trifunctional chemical moiety that includes membrane-anchoring functionalities, on a solid support for use in automated chemical synthesis of a recognition molecule. The invention is further directed to a method of easily and efficiently synthesizing chemical moieties such as those used for biosensor applications. The invention is further directed to a composition, i.e., a solid support having a trifunctional chemical moiety linked thereto, that can be readily and easily used to generate biological molecules for applications, such as biosensor applications.
    Type: Application
    Filed: October 30, 2006
    Publication date: June 21, 2007
    Inventors: Jurgen Schmidt, Basil Swanson, Clifford Unkefer
  • Publication number: 20060019244
    Abstract: An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing samp
    Type: Application
    Filed: June 29, 2005
    Publication date: January 26, 2006
    Inventors: Jennifer Martinez, Basil Swanson, Karen Grace, Wyane Grace, Andrew Shreve
  • Publication number: 20060019321
    Abstract: An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the wave
    Type: Application
    Filed: June 29, 2005
    Publication date: January 26, 2006
    Inventors: Jennifer Martinez, Basil Swanson, John Shively, Lin Li
  • Publication number: 20060003318
    Abstract: A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.
    Type: Application
    Filed: May 17, 2005
    Publication date: January 5, 2006
    Inventors: Basil Swanson, Xuedong Song, Clifford Unkefer, Louis Silks, Jurgen Schmidt
  • Publication number: 20050244487
    Abstract: The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.
    Type: Application
    Filed: March 4, 2005
    Publication date: November 3, 2005
    Inventors: Jose-Maria Sansinena, Antonio Redondo, Basil Swanson, Chanel Yee, Annapoorna Sapuri/Butti, Atul Parikh, Calvin Yang
  • Publication number: 20050191705
    Abstract: An apparatus for and method of detecting a binding event between biomolecules is disclosed and includes admixing a target molecule including a first fluorophore and membrane vesicles including a trifunctional linker molecule, said trifunctional linker molecule including a second fluorophore, to form a sample, introducing a library of elements into said sample, each of said library elements having a binding affinity for said trifunctional linker molecule, and, screening said sample for fluorescence from said first fluorophore and said second fluorophore, such fluorescence indicative of a binding event between an element from said library of elements and said target molecule.
    Type: Application
    Filed: March 1, 2004
    Publication date: September 1, 2005
    Inventors: James Werner, Scott Reed, Basil Swanson
  • Publication number: 20050078903
    Abstract: The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.
    Type: Application
    Filed: October 4, 2004
    Publication date: April 14, 2005
    Inventors: Karen Grace, Basil Swanson, Seppo Honkanen
  • Publication number: 20050027100
    Abstract: The present invention is directed to a method of forming an immobilized chemical moiety, such as a trifunctional chemical moiety that includes membrane-anchoring functionalities, on a solid support for use in automated chemical synthesis of a recognition molecule. The invention is further directed to a method of easily and efficiently synthesizing chemical moieties such as those used for biosensor applications. The invention is further directed to a composition, i.e., a solid support having a trifunctional chemical moiety linked thereto, that can be readily and easily used to generate biological molecules for applications, such as biosensor applications.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 3, 2005
    Inventors: Jurgen Schmidt, Basil Swanson, Clifford Unkefer
  • Publication number: 20030134433
    Abstract: This invention provides for an apparatus and a method for detecting the presence of pathogenic agents with sensors containing functionalized nanostructures integrated into circuits on silicon chips. The nanostructures are functionalized with molecular transducers that recognize and bind targeted analytes which are diagnostic of the pathogenic agent of interest. The molecular transducer includes a receptor portion, which binds the analyte, and an anchor portion that attaches to the nanostructure. Upon binding of the analyte, a change in molecular configuration represented by the newly formed receptor-analyte complex creates a force that is transmitted to the nanostructure via the anchor portion of the transducer. The effect of the force transmitted to the nanostructure is to alter its conductivity. The change in conductivity of the nanotube thus represents a signal that indicates the presence of the pathogenic agent of interest.
    Type: Application
    Filed: January 16, 2003
    Publication date: July 17, 2003
    Applicant: Nanomix, Inc.
    Inventors: Jean Christophe Gabriel, George Gruner, Philip Collins, Basil Swanson, Fred Wudl