Patents by Inventor Baxter Moody

Baxter Moody has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180026144
    Abstract: The invention provides a power semiconductor device including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and a power semiconductor structure comprising at least one doped AlxGa1-xN layer overlying the aluminum nitride single crystalline substrate.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 25, 2018
    Inventors: Baxter Moody, Seiji Mita, Jinqiao Xie
  • Patent number: 9748409
    Abstract: The invention provides a power semiconductor device including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and a power semiconductor structure comprising at least one doped AlxGa1?xN layer overlying the aluminum nitride single crystalline substrate.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 29, 2017
    Assignee: HexaTech, Inc.
    Inventors: Baxter Moody, Seiji Mita, Jinqiao Xie
  • Patent number: 9680062
    Abstract: The invention provides an optoelectronic device adapted to emit ultraviolet light, including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and an ultraviolet light-emitting diode structure overlying the aluminum nitride single crystalline substrate, the diode structure including a first electrode electrically connected to an n-type semiconductor layer and a second electrode electrically connected to a p-type semiconductor layer. In certain embodiments, the optoelectronic devices of the invention exhibit a reverse leakage current less than about 10?5 A/cm2 at ?10 V and/or an L80 of at least about 5000 hours at an injection current density of 28 A/cm2.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: June 13, 2017
    Assignee: HexaTech, Inc.
    Inventors: Jinqiao Xie, Baxter Moody, Seiji Mita
  • Publication number: 20160181474
    Abstract: The invention provides an optoelectronic device adapted to emit ultraviolet light, including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and an ultraviolet light-emitting diode structure overlying the aluminum nitride single crystalline substrate, the diode structure including a first electrode electrically connected to an n-type semiconductor layer and a second electrode electrically connected to a p-type semiconductor layer. In certain embodiments, the optoelectronic devices of the invention exhibit a reverse leakage current less than about 10?5 A/cm2 at ?10 V and/or an L80 of at least about 5000 hours at an injection current density of 28 A/cm2.
    Type: Application
    Filed: February 26, 2016
    Publication date: June 23, 2016
    Inventors: Jinqiao Xie, Baxter Moody, Seiji Mita
  • Patent number: 9321647
    Abstract: Methods of preparing polycrystalline aluminum nitride materials that have high density, high purity, and favorable surface morphology are disclosed. The methods generally comprises pressing aluminum nitride powders to form a slug, sintering the slug to form a sintered, polycrystalline aluminum nitride boule, and optionally shaping the boule and/or polishing at least a portion of the boule to provide a finished substrate. The sintered, polycrystalline aluminum nitride materials beneficially are prepared without the use of any sintering aid or binder, and the formed materials exhibit excellent density, AlN purity, and surface morphology.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: April 26, 2016
    Assignee: HEXATECH, INC.
    Inventors: Baxter Moody, Rafael Dalmau, David Henshall, Raoul Schlesser
  • Patent number: 9299883
    Abstract: The invention provides an optoelectronic device adapted to emit ultraviolet light, including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and an ultraviolet light-emitting diode structure overlying the aluminum nitride single crystalline substrate, the diode structure including a first electrode electrically connected to an n-type semiconductor layer and a second electrode electrically connected to a p-type semiconductor layer. In certain embodiments, the optoelectronic devices of the invention exhibit a reverse leakage current less than about 10?5 A/cm2 at ?10V and/or an L80 of at least about 5000 hours at an injection current density of 28 A/cm2.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: March 29, 2016
    Assignee: Hexatech, Inc.
    Inventors: Jinqiao Xie, Baxter Moody, Seiji Mita
  • Publication number: 20150151968
    Abstract: Methods of preparing polycrystalline aluminum nitride materials that have high density, high purity, and favorable surface morphology are disclosed. The methods generally comprises pressing aluminum nitride powders to form a slug, sintering the slug to form a sintered, polycrystalline aluminum nitride boule, and optionally shaping the boule and/or polishing at least a portion of the boule to provide a finished substrate. The sintered, polycrystalline aluminum nitride materials beneficially are prepared without the use of any sintering aid or binder, and the formed materials exhibit excellent density, AlN purity, and surface morphology.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Inventors: Baxter Moody, Rafael Dalmau, David Henshall, Raoul Schlesser
  • Patent number: 8974726
    Abstract: Methods of preparing polycrystalline aluminum nitride materials that have high density, high purity, and favorable surface morphology are disclosed. The methods generally comprises pressing aluminum nitride powders to form a slug, sintering the slug to form a sintered, polycrystalline aluminum nitride boule, and optionally shaping the boule and/or polishing at least a portion of the boule to provide a finished substrate. The sintered, polycrystalline aluminum nitride materials beneficially are prepared without the use of any sintering aid or binder, and the formed materials exhibit excellent density, AlN purity, and surface morphology.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: March 10, 2015
    Assignee: Hexatech, Inc.
    Inventors: Baxter Moody, Rafael Dalmau, David Henshall, Raoul Schlesser
  • Publication number: 20140264714
    Abstract: The invention provides a power semiconductor device including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and a power semiconductor structure comprising at least one doped AlxGa1?xN layer overlying the aluminum nitride single crystalline substrate.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: HEXATECH, INC.
    Inventors: Baxter Moody, Seiji Mita, Jinqiao Xie
  • Publication number: 20140209923
    Abstract: The invention provides an optoelectronic device adapted to emit ultraviolet light, including an aluminum nitride single crystalline substrate, wherein the dislocation density of the substrate is less than about 105 cm?2 and the Full Width Half Maximum (FWHM) of the double axis rocking curve for the (002) and (102) crystallographic planes is less than about 200 arcsec; and an ultraviolet light-emitting diode structure overlying the aluminum nitride single crystalline substrate, the diode structure including a first electrode electrically connected to an n-type semiconductor layer and a second electrode electrically connected to a p-type semiconductor layer. In certain embodiments, the optoelectronic devices of the invention exhibit a reverse leakage current less than about 10?5 A/cm2 at ?10V and/or an L80 of at least about 5000 hours at an injection current density of 28 A/cm2.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 31, 2014
    Applicant: Hexatech, Inc.
    Inventors: Jinqiao Xie, Baxter Moody, Seiji Mita
  • Patent number: 8766274
    Abstract: Disclosed are methods and materials useful in the preparation of semiconductor devices. In particular embodiments, disclosed are methods for engineering polycrystalline aluminum nitride substrates that are thermally matched to further materials that can be combined therewith. For example, the polycrystalline aluminum nitride substrates can be engineered to have a coefficient of thermal expansion (CTE) that is closely matched to the CTE of a semiconductor material and/or to a material that can be used as a growth substrate for a semiconductor material. The invention also encompasses devices incorporating such thermally engineered substrates and semiconductor materials grown using such thermally engineered substrates. The thermally engineered substrates are advantageous for overcoming problems caused by damage arising from CTE mismatch between component layers in semiconductor preparation methods and materials.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: July 1, 2014
    Assignee: Hexatech, Inc.
    Inventors: Spalding Craft, Baxter Moody, Rafael Dalmau, Raoul Schlesser
  • Publication number: 20120146023
    Abstract: Disclosed are methods and materials useful in the preparation of semiconductor devices. In particular embodiments, disclosed are methods for engineering polycrystalline aluminum nitride substrates that are thermally matched to further materials that can be combined therewith. For example, the polycrystalline aluminum nitride substrates can be engineered to have a coefficient of thermal expansion (CTE) that is closely matched to the CTE of a semiconductor material and/or to a material that can be used as a growth substrate for a semiconductor material. The invention also encompasses devices incorporating such thermally engineered substrates and semiconductor materials grown using such thermally engineered substrates. The thermally engineered substrates are advantageous for overcoming problems caused by damage arising from CTE mismatch between component layers in semiconductor preparation methods and materials.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 14, 2012
    Inventors: Spalding Craft, Baxter Moody, Rafael Dalmau, Raoul Schlesser
  • Publication number: 20120021175
    Abstract: Methods of preparing polycrystalline aluminum nitride materials that have high density, high purity, and favorable surface morphology are disclosed. The methods generally comprises pressing aluminum nitride powders to form a slug, sintering the slug to form a sintered, polycrystalline aluminum nitride boule, and optionally shaping the boule and/or polishing at least a portion of the boule to provide a finished substrate. The sintered, polycrystalline aluminum nitride materials beneficially are prepared without the use of any sintering aid or binder, and the formed materials exhibit excellent density, AlN purity, and surface morphology.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 26, 2012
    Inventors: Baxter Moody, Rafael Dalmau, David Henshall, Raoul Schlesser