Patents by Inventor Been Y. Jin

Been Y. Jin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10236369
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: March 19, 2019
    Assignee: INTEL CORPORATION
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20180047839
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: October 23, 2017
    Publication date: February 15, 2018
    Applicant: INTEL CORPORATION
    Inventors: RAVI PILLARISETTY, JACK T. KAVALIEROS, WILLY RACHMADY, UDAY SHAH, BENJAMIN CHU-KUNG, MARKO RADOSAVLJEVIC, NILOY MUKHERJEE, GILBERT DEWEY, BEEN Y. JIN, ROBERT S. CHAU
  • Patent number: 9799759
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: October 24, 2017
    Assignee: INTEL CORPORATION
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20160172472
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: February 15, 2016
    Publication date: June 16, 2016
    Applicant: INTEL CORPORATION
    Inventors: RAVI PILLARISETTY, JACK T. KAVALIEROS, WILLY RACHMADY, UDAY SHAH, BENJAMIN CHU-KUNG, MARKO RADOSAVLJEVIC, NILOY MUKHERJEE, GILBERT DEWEY, BEEN Y. JIN, ROBERT S. CHAU
  • Patent number: 9153671
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: October 6, 2015
    Assignee: INTEL CORPORATION
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20140103397
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 17, 2014
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Patent number: 8575596
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: November 5, 2013
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20130032783
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: October 9, 2012
    Publication date: February 7, 2013
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Mark Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Patent number: 8283653
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 9, 2012
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Patent number: 8269209
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: September 18, 2012
    Assignee: Intel Corporation
    Inventors: Uday Shah, Benjamin Chu-Kung, Been Y. Jin, Ravi Pillarisetty, Marko Radosavljevic, Willy Rachmady
  • Publication number: 20110147711
    Abstract: Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Ravi Pillarisetty, Jack T. Kavalieros, Willy Rachmady, Uday Shah, Benjamin Chu-Kung, Marko Radosavljevic, Niloy Mukherjee, Gilbert Dewey, Been Y. Jin, Robert S. Chau
  • Publication number: 20090075445
    Abstract: A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
    Type: Application
    Filed: November 19, 2008
    Publication date: March 19, 2009
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew V. Metz, Suman Datta, Brian S. Doyle, Robert S. Chau, Everett X. Wang, Philippe Matagne, Lucian Shifren, Been Y. Jin, Mark Stettler, Martin D. Giles
  • Patent number: 7470972
    Abstract: A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: December 30, 2008
    Assignee: Intel Corporation
    Inventors: Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew V. Metz, Suman Datta, Brian S. Doyle, Robert S. Chau, Everett X. Wang, Philippe Matagne, Lucian Shifren, Been Y. Jin, Mark Stettler, Martin D. Giles