Patents by Inventor Behsan Behzadi

Behsan Behzadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11525916
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical source to emit an optical beam, and free-space optics coupled with the optical source. The free space optics include a photodetector and other optical components to direct a propagated portion of the optical beam or a reflected portion of the optical beam toward the photodetector as a local oscillator signal, and to transmit the optical beam toward a target environment.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: December 13, 2022
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Patent number: 11525901
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes generating a beam of co-propagating, cross-polarized light using a first polarizing beam splitter; and determining a material characteristic or orientation of a target using the co-propagating, cross-polarized light.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 13, 2022
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Publication number: 20220373691
    Abstract: A light detection and ranging (LIDAR) system has a passive modulator to modulate a light signal from an optical source with a low-power mode at a section of a sweep signal to generate a pulsed light signal transmitted towards a target. The LIDAR system has a photodetector to receive a return beam from the target with an amplitude modulated (AM) signal portion and a frequency modulated (FM) signal portion. The LIDAR system determines a target range value for the target based on the AM signal portion and determines a target velocity value for the target based on the FM signal portion.
    Type: Application
    Filed: August 4, 2022
    Publication date: November 24, 2022
    Inventors: Behsan BEHZADI, Mina REZK, Kumar Bhargav VISWANATHA, Esha JOHN
  • Publication number: 20220357438
    Abstract: A LIDAR system includes multiple waveguides to receive a return signal at different angles from a scanning mirror, multiple optical detectors to receive the return signal the plurality of waveguides, and a signal processing system operatively coupled to the plurality of optical detectors. The signal processing system is to process a signal generated from each of the optical detectors and combine the processed signals from the different optical detectors into a combined signal, wherein the combined signal is used to determine range and velocity information associated with a target.
    Type: Application
    Filed: July 20, 2022
    Publication date: November 10, 2022
    Inventors: Ehsan Hamidi, Behsan Behzadi, Pradeep Srinivasan, Mina Rezk
  • Patent number: 11486986
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit a first optical beam having a first frequency and a second optical beam having a second frequency and a dispersive element to deflect the first optical beam having the first frequency at a first angle and the second optical beam having the second frequency at a second angle.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: November 1, 2022
    Assignee: Aeva, Inc.
    Inventors: Mina Rezk, Omer P. Kocaoglu, Oguzhan Avci, Neal N. Oza, Keith Gagne, Behsan Behzadi
  • Patent number: 11486983
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The processing can include an FM processing path to extract FM signal information, and an AM processing path to extract the TOF signal information.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: November 1, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Publication number: 20220334232
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The processing can include an FM processing path to extract FM signal information, and an AM processing path to extract the TOF signal information.
    Type: Application
    Filed: October 27, 2021
    Publication date: October 20, 2022
    Inventors: Behsan BEHZADI, Mina REZK, Kumar Bhargav VISWANATHA, Esha JOHN
  • Publication number: 20220291354
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit an optical beam towards a target and a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam from a first mode of a single mode optical fiber to a second mode of a larger mode area optical fiber.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Behsan Behzadi, Keith Gagne, Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Mina Rezk
  • Publication number: 20220291363
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical circuit including an optical source to transmit an optical beam, a first optical component to generate a local oscillator from the optical beam, a first optical amplifier to amplify a return signal to generate an amplified return signal, wherein a power level of the local oscillator is comparable to a power of amplified spontaneous emission of the first optical amplifier, and an optical detector operatively coupled to the first optical amplifier, the optical detector configured to output an electrical signal based on the amplified return signal and the local oscillator.
    Type: Application
    Filed: May 27, 2022
    Publication date: September 15, 2022
    Inventors: Behsan Behzadi, Mina Rezk
  • Patent number: 11435453
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The LIDAR system can include a modulator to AM modulate an FM modulated light signal with an active modulator to provide the TOF signal information with the FM modulated signal as the power and frequency modulated signal.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: September 6, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Patent number: 11422243
    Abstract: A LIDAR system includes an optical source and multiple waveguides at different positions within the LIDAR system to receive a return signal. A first waveguide receives a first portion of the return signal at a first angle relative to the scanning mirror and a second waveguide receives a second portion of the return signal at a second angle relative to the scanning mirror. The system further includes multiple optical detectors at different positions within the LIDAR system. A first optical detector receives the first portion of the return signal from the first waveguide and a second optical detector receives the second portion of the return signal from the second waveguide. The system further includes a signal processing system operatively coupled to the plurality of optical detectors to determine a distance and velocity of the target object based on the returned signal and corresponding positions of the plurality of waveguides.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: August 23, 2022
    Assignee: AEVA, INC.
    Inventors: Ehsan Hamidi, Behsan Behzadi, Pradeep Srinivasan, Mina Rezk
  • Patent number: 11409000
    Abstract: A light detection and ranging (LIDAR) system encodes a frequency modulation (FM) modulated signal with a time of flight (TOF) signal as a power and frequency modulated signal. The system can emit the power and frequency modulated signal and apply processing to a signal reflection to generate a target point set. The target point set processing can include frequency processing to generate target points based on range and Doppler information, and TOF processing to provide TOF range information. The LIDAR system can include a modulator to AM modulate an FM modulated light signal with a passive modulator to provide the TOF signal information with the FM modulated signal as the power and frequency modulated signal.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: August 9, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk, Kumar Bhargav Viswanatha, Esha John
  • Publication number: 20220236393
    Abstract: A light detection and ranging (LIDAR) system includes an optical source to emit a corresponding plurality of optical beams with synchronized chirp rates and synchronized chirp durations. The plurality of optical beams are each tuned to produce regions of constructive and destructive interference into a combined optical beam. A first optical component forms a phase-locked loop to correct nonlinearities detected in the plurality of optical beams. A second optical component transmits a combined optical beam toward a target environment and receives a target return signal. A third optical component downconverts the target return signal to a plurality of fixed frequency downconverted target return signals, each including a target range component and a target velocity component.
    Type: Application
    Filed: December 30, 2021
    Publication date: July 28, 2022
    Inventors: Behsan Behzadi, Neal N. Oza, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11385332
    Abstract: A light detection and ranging (LIDAR) apparatus is provided that includes an optical source to emit an optical beam towards a target. The LIDAR apparatus further includes a mode field expander operatively coupled to the optical source to expand a mode area of the optical beam.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: July 12, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Keith Gagne, Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Mina Rezk
  • Patent number: 11366206
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical circuit including a laser source configured to emit a laser beam, a beam separator operatively coupled to the laser source, the beam separator configured to separate the laser beam propagated towards a target, a first optical amplifier coupled to the beam separator, the first optical amplifier configured to receive a return laser beam reflected from the target in a return path and amplify the return laser beam to output an amplified return laser beam, and an optical component operatively coupled to the first optical amplifier, the optical component configured to output a current based on the amplified return laser beam.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 21, 2022
    Assignee: Aeva, Inc.
    Inventors: Behsan Behzadi, Mina Rezk
  • Publication number: 20220163669
    Abstract: A light detection and ranging (LiDAR) system according to the present disclosure comprises an optical circulator and one or more photodetectors (PDs). The optical circulator is to transmit the target return signal to the one or more PDs, where the one or more PDs are to mix the target return signal with a local oscillator (LO) signal to generate a signal to extract information of the target.
    Type: Application
    Filed: May 19, 2021
    Publication date: May 26, 2022
    Inventors: Gautam Prabhakar, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Kevin Pollock, Pierre Hicks, Mina Rezk
  • Publication number: 20220137198
    Abstract: A LIDAR system includes an optical source and multiple waveguides at different positions within the LIDAR system to receive a return signal. A first waveguide receives a first portion of the return signal at a first angle relative to the scanning mirror and a second waveguide receives a second portion of the return signal at a second angle relative to the scanning mirror. The system further includes multiple optical detectors at different positions within the LIDAR system. A first optical detector receives the first portion of the return signal from the first waveguide and a second optical detector receives the second portion of the return signal from the second waveguide. The system further includes a signal processing system operatively coupled to the plurality of optical detectors to determine a distance and velocity of the target object based on the returned signal and corresponding positions of the plurality of waveguides.
    Type: Application
    Filed: May 13, 2021
    Publication date: May 5, 2022
    Inventors: Ehsan Hamidi, Behsan Behzadi, Pradeep Srinivasan, Mina Rezk
  • Patent number: 11320522
    Abstract: A light detection and ranging (LIDAR) system uses optical sources to emit a continuous-wave (CW) optical beam and a frequency-modulated (FMCW) optical beam. A first set off optical components is coupled with the optical sources to generate a CW local oscillator (LO) signal from the CW optical beam, to generate an FMCW LO signal from the FMCW optical beam, and to combine the CW optical beam and the FMCW optical beam into a combined optical beam. A second set of optical components is coupled with the first set of optical components, to transmit the combined optical beam toward a target environment and to receive a target return signal from the target environment. A third set of optical components is coupled with the second set of optical components, to generate and detect a target velocity component of the target return signal and a target range component of the target return signal.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 3, 2022
    Assignee: Aeva, Inc.
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk
  • Publication number: 20220091242
    Abstract: A light detection and ranging (LIDAR) system includes an optical source to emit an optical beam, where a local oscillator (LO) signal is generated from a partial reflection of the optical beam from a partially-reflecting surface proximate to the first focal plane, and where a transmitted portion of the optical beam is directed toward a scanned target environment. LIDAR system to focus the LO signal and a target return signal at a second focal plane comprising a conjugate focal plane to the first focal plane. The system may also include a photodetector with a photosensitive surface proximate to the conjugate focal plane to mix the LO signal with the target return signal to generate target information.
    Type: Application
    Filed: December 17, 2020
    Publication date: March 24, 2022
    Inventors: Keith Gagne, Oguzhan Avci, Behsan Behzadi, Mina Rezk, Kevin Pollock, Pierre Hicks, Gautam Prabhakar
  • Publication number: 20220003868
    Abstract: A light detection and ranging (LIDAR) apparatus includes an optical source to emit an optical beam, and free-space optics coupled with the optical source. The free space optics include a photodetector and other optical components to direct a propagated portion of the optical beam or a reflected portion of the optical beam toward the photodetector as a local oscillator signal, and to transmit the optical beam toward a target environment.
    Type: Application
    Filed: September 21, 2021
    Publication date: January 6, 2022
    Inventors: Oguzhan Avci, Omer P. Kocaoglu, Neal N. Oza, Keith Gagne, Behsan Behzadi, Mina Rezk