Patents by Inventor Ben-Li Sheu

Ben-Li Sheu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11757074
    Abstract: To extract light from a light-emitting diode (and thereby improve efficiency of the display), a microlens stack may be formed over the light-emitting diode. The microlens stack may include an array of microlenses that is covered by an additional single microlens. Having stacked microlenses in this way increases lens power without increasing the thickness of the display. The array of microlenses may be formed from an inorganic material whereas the additional single microlens may be formed from an organic material. The additional single microlens may conform to the upper surfaces of the array of microlenses. An additional low-index layer may be interposed between the light-emitting diode and the array of microlenses. A diffusive layer may be formed around the light-emitting diode to capture light emitted from the light-emitting diode sidewalls.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: September 12, 2023
    Assignee: Apple Inc.
    Inventors: Jaein Choi, Joy M. Johnson, Lai Wang, Ben-Li Sheu, Hairong Tang, Steven E. Molesa, Sunggu Kang, Young Cheol Yang
  • Patent number: 11587829
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: February 21, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma
  • Publication number: 20210391513
    Abstract: To extract light from a light-emitting diode (and thereby improve efficiency of the display), a microlens stack may be formed over the light-emitting diode. The microlens stack may include an array of microlenses that is covered by an additional single microlens. Having stacked microlenses in this way increases lens power without increasing the thickness of the display. The array of microlenses may be formed from an inorganic material whereas the additional single microlens may be formed from an organic material. The additional single microlens may conform to the upper surfaces of the array of microlenses. An additional low-index layer may be interposed between the light-emitting diode and the array of microlenses. A diffusive layer may be formed around the light-emitting diode to capture light emitted from the light-emitting diode sidewalls.
    Type: Application
    Filed: April 8, 2021
    Publication date: December 16, 2021
    Inventors: Jaein Choi, Joy M. Johnson, Lai Wang, Ben-Li Sheu, Hairong Tang, Steven E. Molesa, Sunggu Kang, Young Cheol Yang
  • Publication number: 20210159118
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Application
    Filed: January 7, 2021
    Publication date: May 27, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma
  • Patent number: 10910263
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: February 2, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma
  • Patent number: 10892186
    Abstract: Methods and apparatus to fill a feature with a seamless gapfill of copper are described. A copper gapfill seed layer is deposited on a substrate surface by atomic layer deposition followed by a copper deposition by physical vapor deposition to fill the gap with copper.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 12, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Ben-Li Sheu, Feng Q. Liu, Tae Hong Ha, Mei Chang, Shirish Pethe
  • Patent number: 10847463
    Abstract: Methods for forming a copper seed layer having improved anti-migration properties are described herein. In one embodiment, a method includes forming a first copper layer in a feature, forming a ruthenium layer over the first copper layer in the feature, and forming a second copper layer on the ruthenium layer in the feature. The ruthenium layer substantially locks the copper layer there below in place in the feature, preventing substantial physical migration thereof.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 24, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zhiyuan Wu, Meng Chu Tseng, Mehul B. Naik, Ben-Li Sheu
  • Publication number: 20200219720
    Abstract: Methods and apparatus for asymmetric deposition of a material on a structure formed on a substrate are provided herein. In some embodiments, a method for asymmetric deposition of a material includes forming a plasma from a process gas comprising ionized fluorocarbon (CxFy) particles, depositing an asymmetric fluorocarbon (CxFy) polymer coating on a first sidewall and a bottom portion of an opening formed in a first dielectric layer using angled CxFy ions, depositing a metal, metallic nitride, or metallic oxide on a second sidewall of the opening, and removing the CxFy polymer coating from the first sidewall and the bottom portion of the opening to leave an asymmetric deposition of the metal, metallic nitride, or metallic oxide on the structure.
    Type: Application
    Filed: March 9, 2020
    Publication date: July 9, 2020
    Inventors: BEN-LI SHEU, BENCHERKI MEBARKI, JOUNG JOO LEE, ISMAIL EMESH, ROEY SHAVIV, XIANMIN TANG
  • Patent number: 10665542
    Abstract: Described are semiconductor devices and methods of making semiconductor devices with a barrier layer comprising cobalt and manganese nitride. Also described are semiconductor devices and methods of making same with a barrier layer comprising CoMn(N) and, optionally, an adhesion layer.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: May 26, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Sang Ho Yu, Paul F. Ma, Jiang Lu, Ben-Li Sheu
  • Patent number: 10636655
    Abstract: Methods for asymmetric deposition of a material on a structure formed on a substrate are provided herein. In some embodiments, a method for asymmetric deposition of a material includes forming a plasma from a process gas comprising ionized fluorocarbon (CxFy) particles, depositing an asymmetric fluorocarbon (CxFy) polymer coating on a first sidewall and a bottom portion of an opening formed in a first dielectric layer using angled CxFy ions, depositing a metal, metallic nitride, or metallic oxide on a second sidewall of the opening, and removing the CxFy polymer coating from the first sidewall and the bottom portion of the opening to leave an asymmetric deposition of the metal, metallic nitride, or metallic oxide on the structure.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: April 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ben-Li Sheu, Bencherki Mebarki, Joung Joo Lee, Ismail Emesh, Roey Shaviv, Xianmin Tang
  • Publication number: 20190378754
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 12, 2019
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma
  • Patent number: 10431493
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: October 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma
  • Publication number: 20190287791
    Abstract: Methods and apparatus for asymmetric deposition of a material on a structure formed on a substrate are provided herein. In some embodiments, a method for asymmetric deposition of a material includes forming a plasma from a process gas comprising ionized fluorocarbon (CxFy) particles, depositing an asymmetric fluorocarbon (CxFy) polymer coating on a first sidewall and a bottom portion of an opening formed in a first dielectric layer using angled CxFy ions, depositing a metal, metallic nitride, or metallic oxide on a second sidewall of the opening, and removing the CxFy polymer coating from the first sidewall and the bottom portion of the opening to leave an asymmetric deposition of the metal, metallic nitride, or metallic oxide on the structure.
    Type: Application
    Filed: March 19, 2018
    Publication date: September 19, 2019
    Inventors: BEN-LI SHEU, BENCHERKI MEBARKI, JOUNG JOO LEE, ISMAIL EMESH, ROEY SHAVIV, XIANMIN TANG
  • Patent number: 10283352
    Abstract: Semiconductor devices and methods of making semiconductor devices with a barrier layer comprising manganese nitride are described. Also described are semiconductor devices and methods of making same with a barrier layer comprising Mn(N) and, optionally, an adhesion layer.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: May 7, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Feng Q. Liu, Ben-Li Sheu, David Knapp, David Thompson
  • Publication number: 20190115254
    Abstract: Methods and apparatus to fill a feature with a seamless gapfill of copper are described. A copper gapfill seed layer is deposited on a substrate surface by atomic layer deposition followed by a copper deposition by physical vapor deposition to fill the gap with copper.
    Type: Application
    Filed: October 12, 2018
    Publication date: April 18, 2019
    Inventors: Ben-Li Sheu, Feng Q. Liu, Tae Hong Ha, Mei Chang, Shirish Pethe
  • Publication number: 20190067201
    Abstract: Methods for forming a copper seed layer having improved anti-migration properties are described herein. In one embodiment, a method includes forming a first copper layer in a feature, forming a ruthenium layer over the first copper layer in the feature, and forming a second copper layer on the ruthenium layer in the feature. The ruthenium layer substantially locks the copper layer there below in place in the feature, preventing substantial physical migration thereof.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 28, 2019
    Inventors: Zhiyuan WU, Meng Chu TSENG, Mehul B. NAIK, Ben-Li SHEU
  • Publication number: 20180277428
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma
  • Publication number: 20180240755
    Abstract: Described are semiconductor devices and methods of making semiconductor devices with a barrier layer comprising cobalt and manganese nitride. Also described are semiconductor devices and methods of making same with a barrier layer comprising CoMn(N) and, optionally, an adhesion layer.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Sang Ho Yu, Paul F. Ma, Jiang Lu, Ben-Li Sheu
  • Publication number: 20180204721
    Abstract: Semiconductor devices and methods of making semiconductor devices with a barrier layer comprising manganese nitride are described. Also described are semiconductor devices and methods of making same with a barrier layer comprising Mn(N) and, optionally, an adhesion layer.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 19, 2018
    Inventors: Feng Q. Liu, Ben-Li Sheu, David Knapp, David Thompson
  • Patent number: 10008412
    Abstract: Described are methods for controlling the doping of metal nitride films such as TaN, TiN and MnN. The temperature during deposition of the metal nitride film may be controlled to provide a film density that permits a desired amount of doping. Dopants may include Ru, Cu, Co, Mn, Mo, Al, Mg, Cr, Nb, Ta, Ti and V. The metal nitride film may optionally be exposed to plasma treatment after doping.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 26, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Annamalai Lakshmanan, Ben-Li Sheu, Guodan Wei, Nicole Lundy, Paul F. Ma