Patents by Inventor Benedikt STEIN

Benedikt STEIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170247246
    Abstract: A layer material which is particularly suitable for the realization of self-supporting structural elements having an electrode in the layer structure of a MEMS component. The self-supporting structural element is at least partially made up of a silicon carbonitride (Si1-x-yCxNy)-based layer.
    Type: Application
    Filed: June 23, 2015
    Publication date: August 31, 2017
    Inventors: Christoph Schelling, Benedikt Stein, Michael Stumber
  • Patent number: 9725300
    Abstract: Measures for reducing parasitic capacitances in the layer structure of capacitive MEMS sensor elements, in which parasitic capacitances between bond pads for electrically contacting measuring capacitor electrodes and an electrically conductive layer lying underneath are reduced by these measures. The sensor structure having the measuring capacitor electrodes and bond pads of such MEMS components are in a layer structure on a semiconductor substrate. The carrier layer directly underneath the bond pad structure is uninterrupted in the bond pad region, and the layer structure includes at least one insulation layer by which at least one of the bond pads is electrically insulated from an electrically conductive layer lying underneath. At least one layer under the carrier layer is structured in the region of this bond pad, so that hollow spaces are situated in the layer structure underneath this bond pad, by which the parasitic capacitance between this bond pad and the conductive layer lying underneath is reduced.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: August 8, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Heiko Stahl, Arnim Hoechst, Bernhard Gehl, Rolf Scheben, Benedikt Stein
  • Patent number: 9621996
    Abstract: A micromechanical sound transducer system and a corresponding manufacturing method, in which the micromechanical sound transducer system includes a substrate having a front side and a back side, the substrate having a through opening extending between the back side and the front side, and a coil configuration on the front side having a coil axis, which runs essentially parallel to the front side, the coil configuration covering the through opening at least partially. Also provided is a magnet device, which is situated so as to allow for an axial magnetic flux to be generated through the coil configuration. The coil configuration has a winding device which has at least first winding sections made from at least one layer of a low-dimensional conductive material, the coil configuration being configured to inductively detect and/or generate sound.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: April 11, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Christoph Schelling, Michael Stumber, Benedikt Stein, Theresa Lutz, Rolf Scheben
  • Publication number: 20170022046
    Abstract: A MEMS microphone component including at least one sound-pressure-sensitive diaphragm element is formed in the layer structure of the MEMS component, which spans an opening in the layer structure. The diaphragm element is attached via at least one column element in the central area of the opening to the layer structure of the component. The deflections of the diaphragm element are detected with the aid of at least one piezosensitive circuit element, which is implemented in the layer structure of the diaphragm element and is situated in the area of the attachment of the diaphragm element to the column element.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 26, 2017
    Inventors: Thomas BUCK, Fabian Purkl, Michael Stumber, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Publication number: 20170026754
    Abstract: For a MEMS component, in the layer structure of which at least one sound-pressure-sensitive diaphragm element is formed, which spans an opening or cavity in the layer structure and the deflections of which are detected with the aid of at least one piezosensitive circuit element in the attachment area of the diaphragm element, design measures are provided, by which the stress distribution over the diaphragm surface may be influenced intentionally in the event of deflection of the diaphragm element. In particular, measures are provided, by which the mechanical stresses are intentionally introduced into predefined areas of the diaphragm element, to thus amplify the measuring signal. For this purpose, the diaphragm element includes at least one designated bending area, which is defined by the structuring of the diaphragm element and is more strongly deformed in the event of sound action than the adjoining diaphragm sections.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 26, 2017
    Inventors: Thomas Buck, Fabian Purkl, Michael Stumber, Ricardo Ehrenpfordt, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Publication number: 20170022047
    Abstract: Measures are provided, by which mechanical stresses within the diaphragm structure of a MEMS component may be intentionally dissipated, and which additionally enable the implementation of diaphragm elements having a large diaphragm area in comparison to the chip area. The diaphragm element is formed in the layer structure of the MEMS component. It spans an opening in the layer structure and is attached via a spring structure to the layer structure. The spring structure includes at least one first spring component, which is oriented essentially in parallel to the diaphragm element and is formed in a layer plane below the diaphragm element. Furthermore, the spring structure includes at least one second spring component, which is oriented essentially perpendicularly to the diaphragm element. The spring structure is designed in such a way that the area of the diaphragm element is greater than the area of the opening which it spans.
    Type: Application
    Filed: July 19, 2016
    Publication date: January 26, 2017
    Inventors: Fabian PURKL, Michael Stumber, Ricardo Ehrenpfordt, Rolf Scheben, Benedikt Stein, Christoph Schelling
  • Publication number: 20170013364
    Abstract: A micromechanical sound transducer system and a corresponding manufacturing method, in which the micromechanical sound transducer system includes a substrate having a front side and a back side, the substrate having a through opening extending between the back side and the front side, and a coil configuration on the front side having a coil axis, which runs essentially parallel to the front side, the coil configuration covering the through opening at least partially. Also provided is a magnet device, which is situated so as to allow for an axial magnetic flux to be generated through the coil configuration. The coil configuration has a winding device which has at least first winding sections made from at least one layer of a low-dimensional conductive material, the coil configuration being configured to inductively detect and/or generate sound.
    Type: Application
    Filed: July 7, 2015
    Publication date: January 12, 2017
    Inventors: Christoph SCHELLING, Michael STUMBER, Benedikt STEIN, Theresa LUTZ, Rolf SCHEBEN
  • Publication number: 20160280534
    Abstract: Measures for reducing parasitic capacitances in the layer structure of capacitive MEMS sensor elements, in which parasitic capacitances between bond pads for electrically contacting measuring capacitor electrodes and an electrically conductive layer lying underneath are reduced by these measures. The sensor structure having the measuring capacitor electrodes and bond pads of such MEMS components are in a layer structure on a semiconductor substrate. The carrier layer directly underneath the bond pad structure is uninterrupted in the bond pad region, and the layer structure includes at least one insulation layer by which at least one of the bond pads is electrically insulated from an electrically conductive layer lying underneath. At least one layer under the carrier layer is structured in the region of this bond pad, so that hollow spaces are situated in the layer structure underneath this bond pad, by which the parasitic capacitance between this bond pad and the conductive layer lying underneath is reduced.
    Type: Application
    Filed: March 3, 2016
    Publication date: September 29, 2016
    Inventors: Heiko Stahl, Arnim Hoechst, Bernhard Gehl, Rolf Scheben, Benedikt Stein
  • Publication number: 20150256917
    Abstract: A concept is provided for the cost-effective and space-saving implementation of multisensor modules having a high-quality acoustic microphone function and having at least one further sensor function which requires a media application. A component of this type includes at least one MEMS microphone element which is mounted inside a housing across at least one sound opening formed in the housing wall so that the sound pressure application of the microphone structure of the MEMS microphone element takes place via this sound opening and the housing interior functions as the back side volume for the microphone structure. At least one leakage path is formed in the microphone structure for a slow pressure equalization between the front side and the back side of the microphone structure. At least one further MEMS sensor element is situated within the housing, whose sensor function requires a media application.
    Type: Application
    Filed: March 3, 2015
    Publication date: September 10, 2015
    Inventors: Christoph SCHELLING, Benedikt STEIN, Martina REINHARDT, Rolf SCHEBEN, Ricardo EHRENPFORDT