Patents by Inventor Benjamin A. McCool

Benjamin A. McCool has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120171752
    Abstract: The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO2 capture and provides for effective CO2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO2 via a dense (non-porous) membrane from a carbonate-based CO2 snipping solution to a culture medium where the CO2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 5, 2012
    Applicant: Algenol Biofuels Inc.
    Inventors: Ronald CHANCE, William J. KOROS, Benjamin MCCOOL, James NOEL
  • Publication number: 20120137727
    Abstract: Disclosed herein are processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Application
    Filed: February 9, 2012
    Publication date: June 7, 2012
    Applicants: ALGENOL BIOFUELS, INC., MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Yu Huang, Richard W. Baker, Benjamin McCool, Rong Dong
  • Publication number: 20120061614
    Abstract: A method is described for separating CO2 and/or H2S from a mixed gas stream by contacting the gas stream with a non-aqueous, liquid absorbent medium of a primary and/or secondary aliphatic amine, preferably in a non-aqueous, polar, aprotic solvent under conditions sufficient for sorption of at least some of the CO2. The solution containing the absorbed CO2 can then be treated to desorb the acid gas. The method is usually operated as a continuous cyclic sorption-desorption process, with the sorption being carried out in a sorption zone where a circulating stream of the liquid absorbent contacts the gas stream to form a CO2-rich sorbed solution, which is then cycled to a regeneration zone for desorption of the CO2 (advantageously at <100° C.). Upon CO2 release, the regenerated lean solution can be recycled to the sorption tower. CO2:(primary+secondary amine) adsorption molar ratios >0.5:1 (approaching 1:1) may be achieved.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Lisa S. Baugh, Pavel Kortunov, Benjamin A. McCool, Michael Siskin, Dennis G. Peiffer, Quanchang Li
  • Patent number: 8119006
    Abstract: The present invention is directed to a membrane for aromatics separation that is stable in an alcohol containing environment. The polymeric membrane is a epoxy amine based membrane.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 21, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Abhimanyu O. Patil, Timothy D. Shaffer, David T. Ferrughelli, Beth A. Winsett, Benjamin A. McCool, Randall D. Partridge
  • Publication number: 20110217218
    Abstract: A method and system for the selective removal of CO2 and/or H2S from a gaseous stream containing one or more acid gases. In particular, a system and method for separating CO2 and/or H2S from a gas mixture containing an acid gas using an absorbent solution and one or more ejector venturi nozzles in flow communication with one or more absorbent contactors. The method involves contacting a gas mixture containing at least one acid gas with the absorbent solution under conditions sufficient to cause absorption of at least a portion of said acid gas. The absorbent contactors operate in co-current flow and are arranged in a counter-current configuration to increase the driving force for mass transfer. Monoliths can be used that operate in a Taylor flow or slug flow regime. The absorbent solution is treated under conditions sufficient to cause desorption of at least a portion of the acid gas.
    Type: Application
    Filed: February 18, 2011
    Publication date: September 8, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh Gupta, Krishnan Sankaranarayanan, Himanshu Gupta, Benjamin A. McCool, Robert B. Fedich, Richard D. Lenz
  • Publication number: 20100108605
    Abstract: The present invention relates to a polymeric aromatic selective membrane comprising an cross linked polyether imide membrane that comprise the reaction of a polyether amine with an dianhydride, and that may be utilized in a process for selectively separating aromatics from a hydrocarbon feedstream comprised of aromatic and aliphatic hydrocarbons and at least one alcohol, typically ethanol.
    Type: Application
    Filed: October 27, 2009
    Publication date: May 6, 2010
    Inventors: Abhimanyu O. Patil, Timothy D. Shaffer, Satish Bodige, David C. Dalrymple, Benjamin A. McCool, Randall D. Partridge
  • Publication number: 20100059441
    Abstract: The present invention is directed to a membrane for aromatics separation that is stable in an alcohol containing environment. The polymeric membrane is a epoxy amine based membrane.
    Type: Application
    Filed: August 21, 2009
    Publication date: March 11, 2010
    Inventors: Abhimanyu O. Pattil, Timothy D. Shaffer, David T. Ferrughelli, Beth A. Winsett, Benjamin A. McCool, Randall D. Partridge
  • Publication number: 20100016619
    Abstract: The present invention relates to the modification of the internal surfaces of zeolite crystals via treatment with alcohols containing at least four carbon atoms. The modified zeolites possess high thermal stability and the properties of the modified zeolites can be tailored to provide improved performance for use in separations processes.
    Type: Application
    Filed: July 14, 2009
    Publication date: January 21, 2010
    Inventors: Chil-Hung Cheng, Christopher Jones, Sankar Nair, Ronald R. Chance, Benjamin A. McCool, Harry W. Deckman