Patents by Inventor Benjamin B. Braunheim

Benjamin B. Braunheim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6895396
    Abstract: A new method to analyze and predict the binding energy for enzyme-transition state inhibitor interactions is presented. Computational neural networks are employed to discovery quantum mechanical features of transition states and putative inhibitors necessary for binding. The method is able to generate its own relationship between the quantum mechanical structure of the inhibitor and the strength of binding. Feed-forward neural networks with back propagation of error can be trained to recognize the quantum mechanical electrostatic potential at the entire van der Waals surface, rather than a collapsed representation, of a group of training inhibitors and to predict the strength of interactions between the enzyme and a group of novel inhibitors. The experimental results show that the neural networks can predict with quantitative accuracy the binding strength of new inhibitors.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: May 17, 2005
    Assignee: Albert Einstein College of Medicine of Yeshiva University
    Inventors: Steven D. Schwartz, Vern L. Schramm, Benjamin B. Braunheim
  • Publication number: 20040148265
    Abstract: A new method to analyze and predict the binding energy for enzyme-transition state inhibitor interactions is presented. Computational neural networks are employed to discovery quantum mechanical features of transition states and putative inhibitors necessary for binding. The method is able to generate its own relationship between the quantum mechanical structure of the inhibitor and the strength of binding. Feed-forward neural networks with back propagation of error can be trained to recognize the quantum mechanical electrostatic potential at the entire van der Waals surface, rather than a collapsed representation, of a group of training inhibitors and to predict the strength of interactions between the enzyme and a group of novel inhibitors. The experimental results show that the neural networks can predict with quantitative accuracy the binding strength of new inhibitors.
    Type: Application
    Filed: January 6, 2004
    Publication date: July 29, 2004
    Inventors: Steven D. Schwartz, Vern L. Schramm, Benjamin B. Braunheim
  • Patent number: 6678618
    Abstract: A new method to analyze and predict the binding energy for enzyme-transition state inhibitor interactions is presented. Computational neural networks are employed to discovery quantum mechanical features of transition states and putative inhibitors necessary for binding. The method is able to generate its own relationship between the quantum mechanical structure of the inhibitor and the strength of binding. Feed-forward neural networks with back propagation of error can be trained to recognize the quantum mechanical electrostatic potential at the entire van der Waals surface, rather than a collapsed representation, of a group of training inhibitors and to predict the strength of interactions between the enzyme and a group of novel inhibitors. The experimental results show that the neural networks can predict with quantitative accuracy the binding strength of new inhibitors.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: January 13, 2004
    Assignee: Albert Einstein College of Medicine of Yeshiva University
    Inventors: Steven D. Schwartz, Vern L. Schramm, Benjamin B. Braunheim
  • Patent number: 6587845
    Abstract: A computational method for the discovery and design of therapeutically valuable bioactive compounds is presented. The method employed has successfully analyzed enzymatic inhibitors for their chemical properties through the use of a neural network and associated algorithms. This method is an improvement over the current methods of drug discovery which often employs a random search through a large library of synthesized chemical compounds or biological samples for bioactivity related to a specific therapeutic use. This time-consuming process is the most expensive portion of current drug discovery methods. The development of computational methods for the prediction of specific molecular activity will facilitate the design of novel chemotherapeutics or other chemically useful compounds. The novel neural network provided in the current invention is “trained” with the bioactivity of known compounds and then used to predict the bioactivity of unknown compounds.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: July 1, 2003
    Inventor: Benjamin B. Braunheim
  • Patent number: 6185548
    Abstract: A new method to analyze and predict the binding energy for enzyme-transition state inhibitor interactions is presented. Computational neural networks are employed to discovery quantum mechanical features of transition states and putative inhibitors necessary for binding. The method is able to generate its own relationship between the quantum mechanical structure of the inhibitor and the strength of binding. Feed-forward neural networks with back propagation of error can be trained to recognize the quantum mechanical electrostatic potential at the entire van der Waals surface, rather than a collapsed representation, of a group of training inhibitors and to predict the strength of interactions between the enzyme and a group of novel inhibitors. The experimental results show that the neural networks can predict with quantitative accuracy the binding strength of new inhibitors.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: February 6, 2001
    Assignee: Albert Einstein College of Medicine of Yeshiva University
    Inventors: Steven D. Schwartz, Vern L. Schramm, Benjamin B. Braunheim