Patents by Inventor Benjamin D. Mosser

Benjamin D. Mosser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11753345
    Abstract: Systems and methods for making ceramic powders are provided. The method for forming a ceramic powder includes: preparing a precursor mixture, wherein the preparing comprises adding at least one additive to a plurality of reagents, wherein the at least one additive includes at least one of: an oxide, a salt, a pure metal, or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein, due to the preparing step, the precursor mixture comprises a sufficient amount of the at least one additive to form the ceramic powder, wherein the ceramic powder comprises: (a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof; and (b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: September 12, 2023
    Assignee: ALCOA USA CORP.
    Inventors: James C. McMillen, Lance M. Sworts, Benjamin D. Mosser
  • Publication number: 20220112617
    Abstract: In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: Benjamin D. Mosser, Lance M. Sworts
  • Patent number: 11203814
    Abstract: In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: December 21, 2021
    Assignee: ALCOA USA CORP.
    Inventors: Benjamin D. Mosser, Lance M. Sworts
  • Publication number: 20210355592
    Abstract: New copper-coated titanium diboride electrodes are disclosed. The copper-coated titanium diboride electrodes may be used in an aluminum electrolysis cell. In one embodiment, a method includes installing the copper-coated titanium diboride electrode in the aluminum electrolysis cell and operating the aluminum electrolysis cell. During start-up, the aluminum electrolysis cell may be preheated and a bath may be formed from a molten electrolyte. Alumina (Al2O3) may in the added to the bath and reduced to aluminum metal. At least some of the copper film of the copper-coated titanium diboride electrode may be replaced by an aluminum film, thereby forming an aluminum-wetted titanium diboride electrode.
    Type: Application
    Filed: July 30, 2021
    Publication date: November 18, 2021
    Inventors: Xinghua Liu, Benjamin D. Mosser
  • Publication number: 20210355037
    Abstract: Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber; a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 18, 2021
    Inventors: James C. McMillen, Lance M. Sworts, Benjamin D. Mosser, Charles Robert Shanta, III
  • Patent number: 11078124
    Abstract: Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber; a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: August 3, 2021
    Assignee: ALCOA USA CORP.
    Inventors: James C. McMillen, Lance M. Sworts, Benjamin D. Mosser, Charles Robert Shanta, III
  • Publication number: 20190135703
    Abstract: Systems and methods for making ceramic powders configured with consistent, tailored characteristics and/or properties are provided herein. In some embodiments a system for making ceramic powders, includes: a reactor body having a reaction chamber and configured with a heat source to provide a hot zone along the reaction chamber; a sweep gas inlet configured to direct a sweep gas into the reaction chamber and a sweep gas outlet configured to direct an exhaust gas from the reaction chamber; a plurality of containers, within the reactor body, configured to retain at least one preform, wherein each container is configured to permit the sweep gas to flow therethrough, wherein the preform is configured to permit the sweep gas to flow there through, such that the precursor mixture is reacted in the hot zone to form a ceramic powder product having uniform properties.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: James C. McMillen, Lance M. Sworts, Benjamin D. Mosser, Charles Robert Shanta, III
  • Publication number: 20190127282
    Abstract: Systems and methods for making ceramic powders are provided. The method for forming a ceramic powder includes: preparing a precursor mixture, wherein the preparing comprises adding at least one additive to a plurality of reagents, wherein the at least one additive includes at least one of: an oxide, a salt, a pure metal, or an alloy of elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77 and combinations thereof; and carbothermically reacting the precursor mixture to form a ceramic powder, wherein, due to the preparing step, the precursor mixture comprises a sufficient amount of the at least one additive to form the ceramic powder, wherein the ceramic powder comprises: (a) a morphology selected from the group consisting of irregular, equiaxed, plate-like, and combinations thereof; and (b) a particle size distribution selected from the group consisting of fine, intermediate, coarse, and combinations thereof.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 2, 2019
    Inventors: James C. McMillen, Lance M. Sworts, Benjamin D. Mosser
  • Publication number: 20180009717
    Abstract: In some embodiments, a ceramic armor product includes: a ceramic powder; an at least one metal-based additive; and a density of 4.3-4.7 g/cc, wherein the ceramic armor product is substantially lacking grain orientation. In some embodiments, a ceramic armor product, includes: a ceramic powder, wherein the ceramic powder is titanium diboride (TiB2); an at least one metal-based additive, wherein the at least one metal based additive comprises elements ranging from atomic numbers 21 through 30, 39 through 51, and 57 through 77; and a density of 4.3-4.7 g/cc, wherein the ceramic armor product is substantially lacking grain orientation.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 11, 2018
    Inventors: Benjamin D. Mosser, James C. McMillen, William Wolf, Lance M. Sworts, Artemas Steere
  • Publication number: 20170283968
    Abstract: In one embodiment, the disclosed subject matter relates to an electrolytic cell that has: a cell reservoir; a cathode support retained on a bottom of the cell reservoir, wherein the cathode support contacts at least one of: a metal pad and a molten electrolyte bath within the cell reservoir, wherein the cathode support includes: a body having a support bottom, which is configured to be in communication with the bottom of the electrolysis cell; and a support top, opposite the support bottom, having a cathode attachment area configured to retain a at least one cathode plate therein.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 5, 2017
    Inventors: Benjamin D. Mosser, Lance M. Sworts