Patents by Inventor Benjamin Funk

Benjamin Funk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9759561
    Abstract: A method for computing a correction to a compass heading for a portable device worn or carried by a user is described. The method involves determining a heading for the device based on a compass reading, collecting data from one or more sensors, determining if the device is indoors or outdoors based on the collected data, and correcting the heading based on the determination of whether the device is indoors or outdoors.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 12, 2017
    Assignee: TRX Systems, Inc.
    Inventors: Travis Young, John Miller, John Karvounis, Dan Hakim, Jared Napora, Benjamin Funk, Carole Teolis
  • Patent number: 9746327
    Abstract: Disclosed herein are methods and systems for fusion of sensor and map data using constraint based optimization. In an embodiment, a computer-implemented method may include obtaining tracking data for a tracked subject, the tracking data including data from a dead reckoning sensor; obtaining constraint data for the tracked subject; and using a convex optimization method based on the tracking data and the constraint data to obtain a navigation solution. The navigation solution may be a path and the method may further include propagating the constraint data by a motion model to produce error bounds that continue to constrain the path over time. The propagation of the constraint data may be limited by other sensor data and/or map structural data.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: August 29, 2017
    Assignee: TRX Systems, Inc.
    Inventors: Daniel Hakim, Christopher Giles, John Karvounis, Benjamin Funk, Jared Napora, Carole Teolis
  • Patent number: 9733091
    Abstract: This disclosure provides techniques for the creation of maps of indoor spaces. In these techniques, an individual or a team with no mapping or cartography expertise can contribute to the creation of maps of buildings, campuses or cities. An indoor location system can track the location of contributors in the building. As they walk through indoor spaces, an application may automatically create a map based on data from motion sensors by both tracking the location of the contributors and also inferring building features such as hallways, stairways, and elevators based on the tracked contributors' motions as they move through a structure. With these techniques, the process of mapping buildings can be crowd sourced to a large number of contributors, making the indoor mapping process efficient and easy to scale up.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: August 15, 2017
    Assignee: TRX Systems, Inc.
    Inventors: Kamiar Kordari, Benjamin Funk, Carole Teolis, Jared Napora, John Karvounis, Dan Hakim, Christopher Giles, Carol Politi
  • Publication number: 20170153111
    Abstract: Disclosed herein are methods and systems for mapping irregular features. In an embodiment, a computer-implemented method may include obtaining tracking data that has dead reckoning tracking data for a tracked subject along a path and performing shape correction on the tracking data to provide a first estimate of the path.
    Type: Application
    Filed: August 16, 2016
    Publication date: June 1, 2017
    Inventors: Amrit Bandyopadhyay, Brian Beisel, John Karvounis, Benjamin Funk, Carole Teolis, Christopher Giles
  • Patent number: 9441973
    Abstract: Disclosed herein are methods and systems for mapping irregular features. In an embodiment, a computer-implemented method may include obtaining tracking data that has dead reckoning tracking data for a tracked subject along a path and performing shape correction on the tracking data to provide a first estimate of the path.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 13, 2016
    Assignee: TRX Systems, Inc.
    Inventors: Amrit Bandyopadhyay, Brian Beisel, John Karvounis, Benjamin Funk, Carole Teolis, Christopher Giles
  • Publication number: 20160231121
    Abstract: A location and mapping service is described that creates a global database of indoor navigation maps through crowd-sourcing and data fusion technologies. The navigation maps consist of a database of geo-referenced, uniquely described features in the multi-dimensional sensor space (e.g., including structural, RF, magnetic, image, acoustic, or other data) that are collected automatically as a tracked mobile device is moved through a building (e.g. a person with a mobile phone or a robot). The feature information can be used to create building models as one or more tracked devices traverse a building.
    Type: Application
    Filed: April 14, 2016
    Publication date: August 11, 2016
    Inventors: Travis YOUNG, Kamiar KORDARI, Benjamin FUNK, Carole TEOLIS
  • Patent number: 9395190
    Abstract: A location and mapping service is described that creates a global database of indoor navigation maps through crowd-sourcing and data fusion technologies. The navigation maps consist of a database of geo-referenced, uniquely described features in the multi-dimensional sensor space (e.g., including structural, RF, magnetic, image, acoustic, or other data) that are collected automatically as a tracked mobile device is moved through a building (e.g. a person with a mobile phone or a robot). The feature information can be used to create building models as one or more tracked devices traverse a building.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: July 19, 2016
    Assignee: TRX Systems, Inc.
    Inventors: Travis Young, Kamiar Kordari, Benjamin Funk, Carole Teolis
  • Publication number: 20160195400
    Abstract: A location and mapping service is described that creates a global database of indoor navigation maps through crowd-sourcing and data fusion technologies. The navigation maps consist of a database of geo-referenced, uniquely described features in the multi-dimensional sensor space (e.g., including structural, RF, magnetic, image, acoustic, or other data) that are collected automatically as a tracked mobile device is moved through a building (e.g. a person with a mobile phone or a robot). The feature information can be used to create building models as one or more tracked devices traverse a building.
    Type: Application
    Filed: May 15, 2015
    Publication date: July 7, 2016
    Inventors: Travis Young, Kamiar Kordari, Benjamin Funk, Carole Teolis
  • Publication number: 20160195391
    Abstract: A method for computing a correction to a compass heading for a portable device worn or carried by a user is described. The method involves determining a heading for the device based on a compass reading, collecting data from one or more sensors, determining if the device is indoors or outdoors based on the collected data, and correcting the heading based on the determination of whether the device is indoors or outdoors.
    Type: Application
    Filed: May 15, 2015
    Publication date: July 7, 2016
    Inventors: Travis Young, John Miller, John Karvounis, Dan Hakim, Jared Napora, Benjamin Funk, Carole Teolis
  • Publication number: 20150354965
    Abstract: Disclosed herein are methods and systems for mapping irregular features. In an embodiment, a computer-implemented method may include obtaining tracking data that has dead reckoning tracking data for a tracked subject along a path and performing shape correction on the tracking data to provide a first estimate of the path.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 10, 2015
    Inventors: Amrit Bandyopadhyay, Brian Beisel, John Karvounis, Benjamin Funk, Carole Teolis, Christopher Giles
  • Patent number: 8990014
    Abstract: Methods, systems, and computer readable storage media are presented for directional scaling of inertial path data to satisfy ranging constraints. The presented techniques take into account scaling confidence information. In addition to bounding potential scale corrections based on the reliability of the inertial path and the magnetic heading confidence, the techniques bound potential scale parameters based on constraints and solve for directional scale parameters.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: March 24, 2015
    Assignee: TRX Systems, Inc.
    Inventors: Benjamin Funk, Dan Hakim, John Karvounis, Carole Teolis
  • Patent number: 8930163
    Abstract: A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 6, 2015
    Assignee: TRX Systems, Inc.
    Inventors: Kamiar Kordari, Benjamin Funk, Jared Napora, Ruchika Verma, Carole Teolis, Travis Young
  • Publication number: 20140278060
    Abstract: This disclosure provides techniques for the creation of maps of indoor spaces. In these techniques, an individual or a team with no mapping or cartography expertise can contribute to the creation of maps of buildings, campuses or cities. An indoor location system can track the location of contributors in the building. As they walk through indoor spaces, an application may automatically create a map based on data from motion sensors by both tracking the location of the contributors and also inferring building features such as hallways, stairways, and elevators based on the tracked contributors' motions as they move through a structure. With these techniques, the process of mapping buildings can be crowd sourced to a large number of contributors, making the indoor mapping process efficient and easy to scale up.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 18, 2014
    Applicant: TRX Systems, Inc.
    Inventors: Kamiar Kordari, Benjamin Funk, Carole Teolis, Jared Napora, John Karvounis, Dan Hakim, Christopher Giles, Carol Politi
  • Publication number: 20140278080
    Abstract: Methods, systems, and computer readable storage media are presented for directional scaling of inertial path data to satisfy ranging constraints. The presented techniques take into account scaling confidence information. In addition to bounding potential scale corrections based on the reliability of the inertial path and the magnetic heading confidence, the techniques bound potential scale parameters based on constraints and solve for directional scale parameters.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: TRX Systems, Inc.
    Inventors: Benjamin Funk, Dan Hakim, John Karvounis, Carole Teolis
  • Publication number: 20130332065
    Abstract: Disclosed herein are methods and systems for fusion of sensor and map data using constraint based optimization. In an embodiment, a computer-implemented method may include obtaining tracking data for a tracked subject, the tracking data including data from a dead reckoning sensor; obtaining constraint data for the tracked subject; and using a convex optimization method based on the tracking data and the constraint data to obtain a navigation solution. The navigation solution may be a path and the method may further include propagating the constraint data by a motion model to produce error bounds that continue to constrain the path over time. The propagation of the constraint data may be limited by other sensor data and/or map structural data.
    Type: Application
    Filed: June 12, 2013
    Publication date: December 12, 2013
    Inventors: Daniel Hakim, Christopher Giles, John Karvounis, Benjamin Funk, Jared Napora, Carole Teolis
  • Publication number: 20130311133
    Abstract: A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 21, 2013
    Inventors: Kamiar Kordari, Benjamin Funk, Jared Napora, Ruchika Verma, Carole Teolis, Travis Young
  • Publication number: 20130311134
    Abstract: A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 21, 2013
    Applicant: TRX SYSTEMS, INC.
    Inventors: Kamiar Kordari, Benjamin Funk, Jared Napora, Ruchika Verma, Carole Teolis, Travis Young
  • Publication number: 20080077326
    Abstract: The present invention is directed to methods and systems for locating and monitoring the status of people and moveable assets, such as first responders, including firefighters and other public service personnel, and their equipment both indoors and out. The invention can provide for locating and monitoring the status of people and assets in environments where GPS systems do not operate, or where operation is impaired or otherwise limited. The system and method uses inertial navigation to determine the location, motion and orientation of the personnel or assets and communicates with an external monitoring station to receive requests for location, motion orientation and status information and to transmit the location, motion orientation and status information to the monitoring station.
    Type: Application
    Filed: May 31, 2007
    Publication date: March 27, 2008
    Inventors: Benjamin Funk, Amrit Bandyopadhyay, Eric Kohn, Neil Goldsman, Carole Teolis, Gilmer Blankenship