Patents by Inventor Benjamin Hale Winkler

Benjamin Hale Winkler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11228215
    Abstract: A method includes forming one or more cores, wherein each of the one or more cores has a cross section corresponding to a conductor to be subsequently formed, forming an insulator around the one or more cores, removing the one or more cores to expose one or more recesses within the insulator, and forming one or more conductors in at least one of the one or more recesses of the insulator such that the cross sections of the one or more conductors conform to an interior surface of the one or more recesses in the insulator.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: January 18, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Michael Calebrese, Jeffrey S. Sullivan, Qin Chen, Benjamin Hale Winkler, Kevin Warner Flanagan, Anil Raj Duggal
  • Publication number: 20200328642
    Abstract: A method includes forming one or more cores, wherein each of the one or more cores has a cross section corresponding to a conductor to be subsequently formed, forming an insulator around the one or more cores, removing the one or more cores to expose one or more recesses within the insulator, and forming one or more conductors in at least one of the one or more recesses of the insulator such that the cross sections of the one or more conductors conform to an interior surface of the one or more recesses in the insulator.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Michael Calebrese, Jeffrey S. Sullivan, Qin Chen, Benjamin Hale Winkler, Kevin Warner Flanagan, Anil Raj Duggal
  • Patent number: 10700564
    Abstract: A method includes forming one or more cores, wherein each of the one or more cores has a cross section corresponding to a conductor to be subsequently formed, forming an insulator around the one or more cores, removing the one or more cores to expose one or more recesses within the insulator, and forming one or more conductors in at least one of the one or more recesses of the insulator such that the cross sections of the one or more conductors conform to an interior surface of the one or more recesses in the insulator.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: June 30, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Michael Calebrese, Jeffrey S. Sullivan, Qin Chen, Benjamin Hale Winkler, Kevin Warner Flanagan, Anil Raj Duggal
  • Publication number: 20180301244
    Abstract: A method includes forming one or more cores, wherein each of the one or more cores has a cross section corresponding to a conductor to be subsequently formed, forming an insulator around the one or more cores, removing the one or more cores to expose one or more recesses within the insulator, and forming one or more conductors in at least one of the one or more recesses of the insulator such that the cross sections of the one or more conductors conform to an interior surface of the one or more recesses in the insulator.
    Type: Application
    Filed: April 17, 2017
    Publication date: October 18, 2018
    Inventors: Christopher Michael Calebrese, Jeffrey S. Sullivan, Qin Chen, Benjamin Hale Winkler, Kevin Warner Flanagan, Anil Raj Duggal
  • Patent number: 9784157
    Abstract: According to various embodiments, an exhaust treatment system includes a catalyst that is in direct contact with an exhaust stream, at least one sensor that senses a system parameter and produces one or more signals corresponding to the system parameter, and a controller that is configured to receive the one or more signals and control catalyst performance based on the one or more signals by regenerating the catalyst. Regenerating the catalyst includes increasing a temperature of the exhaust stream flowing to the catalyst and directing a reductant injector to adjust a flow rate of reductant being injected into the exhaust stream flowing to the catalyst.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: October 10, 2017
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Stanlee Teresa Buddle, Dan Hancu, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar
  • Publication number: 20170234184
    Abstract: According to various embodiments, an exhaust treatment system includes a catalyst that is in direct contact with an exhaust stream, at least one sensor that senses a system parameter and produces one or more signals corresponding to the system parameter, and a controller that is configured to receive the one or more signals and control catalyst performance based on the one or more signals by regenerating the catalyst. Regenerating the catalyst includes increasing a temperature of the exhaust stream flowing to the catalyst and directing a reductant injector to adjust a flow rate of reductant being injected into the exhaust stream flowing to the catalyst.
    Type: Application
    Filed: March 25, 2010
    Publication date: August 17, 2017
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Daniel George Norton, Stanlee Teresa Buddle, Dan Hancu, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar
  • Patent number: 9687819
    Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: June 27, 2017
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Patent number: 9362537
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated, ion-conducting separator disposed in the volume. The separator usually extends in a vertical direction relative to a base of the housing, so as to define a height dimension of the cell. The separator has a first circumferential surface defining a portion of a first compartment. The cell further includes a shim structure disposed generally parallel to the first circumferential surface of the separator between the interior surface and the first circumferential surface of the separator. The structure includes at least two shims, a first shim and a second shim, that substantially overlap each other. An energy storage device including such an electrochemical cell is also provided.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: June 7, 2016
    Assignee: General Electric Company
    Inventors: Guillermo Daniel Zappi, Mohamed Rahmane, Benjamin Hale Winkler, James Lowe Sudworth, Roger Neil Bull, Charles Dominic Iacovangelo
  • Patent number: 9272271
    Abstract: A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 1, 2016
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Donald Wayne Whisenhunt, Jr., Dan Hancu, Ashish Balkrishna Mhadeshwar, Benjamin Hale Winkler, Daniel George Norton, Oltea Puica Siclovan, Ming Yin
  • Publication number: 20140378296
    Abstract: A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 25, 2014
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Donald Wayne Whisenhunt, JR., Dan Hancu, Ashish Balkrishna Mhadeshwar, Benjamin Hale Winkler, Daniel George Norton, Oltea Puica Siclovan, Ming Yin
  • Patent number: 8889587
    Abstract: A catalyst system comprising a first catalytic composition comprising a first catalytic material disposed on a metal inorganic support; wherein the metal inorganic support has pores; and at least one promoting metal. The catalyst system further comprises a second catalytic composition comprising, (i) a zeolite, or (ii) a first catalytic material disposed on a first substrate, the first catalytic material comprising an element selected from the group consisting of tungsten, titanium, and vanadium. The catalyst system may further comprise a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. A catalyst system comprising a first catalytic composition, the second catalytic composition, and the third catalytic composition is also provided. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 18, 2014
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20130309544
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated, ion-conducting separator disposed in the volume. The separator usually extends in a vertical direction relative to a base of the housing, so as to define a height dimension of the cell. The separator has a first circumferential surface defining a portion of a first compartment. The cell further includes a shim structure disposed generally parallel to the first circumferential surface of the separator between the interior surface and the first circumferential surface of the separator. The structure includes at least two shims, a first shim and a second shim, that substantially overlap each other. An energy storage device including such an electrochemical cell is also provided.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: General Electric Company
    Inventors: Guillermo Daniel Zappi, Mohamed Rahmane, Benjamin Hale Winkler, James Lowe Sudworth, Roger Neil Bull, Charles Dominic Iacovangelo
  • Publication number: 20130303365
    Abstract: A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 14, 2013
    Inventors: Ming Yin, Larry Neil Lewis, Oltea Puica Siclovan, Dan Hancu, Benjamin Hale Winkler, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Patent number: 8530369
    Abstract: A catalyst composition is provided that includes a catalytic metal secured to a substrate, and the substrate is mesoporous and has pores that are templated. A catalyst composition includes a catalytic metal secured to a mesoporous substrate. The mesoporous substrate is a reaction product of a reactive solution, a solvent, a modifier, and a templating agent. A method includes reacting a reactive solution and a templating agent to form a gel; and calcining the gel to form a substrate having a mesoporous template that is capable to support a catalyst composition.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: September 10, 2013
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Oltea Puica Siclovan, Hrishikesh Keshavan, Dan Hancu, Benjamin Hale Winkler
  • Patent number: 8505285
    Abstract: A catalyst system includes a first catalytic composition and a second catalytic composition. The first catalytic composition includes a homogeneous solid mixture, which includes a first catalytic material disposed on a first substrate. The pores of the solid mixture have an average diameter of greater than about 45 nanometers. The second catalytic composition includes at least one of a zeolite or a second catalytic material disposed on a second substrate. The second catalytic material includes an element selected from the group that includes tungsten, titanium, and vanadium.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Patent number: 8476187
    Abstract: The present invention details a process for producing a catalyst powder. The steps of the process include preparing catalyst slurry, drying, pyrolyzing, and calcining the catalyst slurry to obtain a calcined catalyst powder. The catalyst slurry comprises a catalyst, a liquid carrier, a templating agent, and a catalyst substrate. The catalyst slurry is dried to obtain a raw catalyst powder. The raw catalyst powder is heated in a first controlled atmosphere to obtain a pyrolyzed catalyst powder and the pyrolyzed catalyst powder is calcined in a second controlled atmosphere to obtain a calcined catalyst powder. A method of fabricating a catalyst surface and catalytic converter using the prepared catalyst powder is also illustrated.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Larry Neil Lewis, Elliott West Shanklin, Frederic Joseph Klug, Venkat Subramaniam Venkataramani, Robert Joseph Lyons, Dan Hancu, Benjamin Hale Winkler, Hrishikesh Keshavan
  • Patent number: 8459010
    Abstract: A catalyst composition is provided that includes a catalytic metal secured to a substrate, and the substrate is mesoporous and has pores that are templated. A catalyst composition includes a catalytic metal secured to a mesoporous substrate. The mesoporous substrate is a reaction product of a reactive solution, a solvent, a modifier, and a templating agent. A method for controlling nitrous oxide emissions including the catalyst composition comprising introducing a regeneration fuel into an exhaust stream upstream relative to the catalyst composition and heating the exhaust stream upstream relative to the catalyst composition. When the regeneration fuel is introduced the air/fuel ratio ? of an air/fuel mixture of a lean burn exhaust is greater than 1.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: June 11, 2013
    Assignee: General Electric Company
    Inventors: Dan Hancu, Larry Neil Lewis, Benjamin Hale Winkler, Daniel George Norton
  • Patent number: 8353155
    Abstract: A catalyst system comprising a first catalytic composition comprising a first catalytic material disposed on a metal inorganic support; wherein the metal inorganic support has pores; and at least one promoting metal. The catalyst system further comprises a second catalytic composition comprising, (i) a zeolite, or (ii) a first catalytic material disposed on a first substrate, the first catalytic material comprising an element selected from the group consisting of tungsten, titanium, and vanadium. The catalyst system may further comprise a third catalytic composition. The catalyst system may further comprise a delivery system configured to deliver a reductant and optionally a co-reductant. A catalyst system comprising a first catalytic composition, the second catalytic composition, and the third catalytic composition is also provided. An exhaust system comprising the catalyst systems described herein is also provided.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: January 15, 2013
    Assignee: General Electric Company
    Inventors: Larry Neil Lewis, Benjamin Hale Winkler, Dan Hancu, Daniel George Norton, Ashish Balkrishna Mhadeshwar
  • Publication number: 20130004828
    Abstract: An electrochemical cell is presented. The cell includes a housing having an interior surface defining a volume, and an elongated, ion-conducting separator disposed in the volume. The separator usually extends in a vertical direction relative to a base of the housing, so as to define a height dimension of the cell. The separator has a first circumferential surface defining a portion of a first compartment. The cell further includes a shim structure disposed between the interior surface and the first circumferential surface of the separator. The structure includes at least two shims. Each shim has a circumferential surface generally parallel to the other, and generally parallel to the first circumferential surface of the separator. An energy storage device including such an electrochemical cell is also provided.
    Type: Application
    Filed: June 30, 2011
    Publication date: January 3, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Guillermo Daniel Zappi, Charles Dominic Iacovangelo, Mohamed Rahmane, Benjamin Hale Winkler, Roger Neil Bull, James Lowe Sudworth
  • Patent number: 8293197
    Abstract: A system for reducing nitrogen oxides from an exhaust fluid is provided. The system includes an exhaust source, a hydrocarbon reductant source, a first injector in fluid communication with the hydrocarbon reductant source, where the first injector receives a first hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the first portion of the hydrocarbon reductant stream. The system further includes a first catalyst that receives the exhaust stream and the first hydrocarbon reductant stream, a second injector in fluid communication with the hydrocarbon reductant source, where the second injector receives a second hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the second hydrocarbon reductant stream, and a second catalyst disposed to receive an effluent from the first catalyst and the second portion of the hydrocarbon reductant stream.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: October 23, 2012
    Assignee: General Electric Company
    Inventors: Benjamin Hale Winkler, Dan Hancu, Ashish Balkrishna Mhadeshwar