Patents by Inventor Benjamin J. Clark

Benjamin J. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9314644
    Abstract: Methods and system are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 19, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Andrew Wu, Benjamin J. Clark, Erik Thai, Nicolas Zadno, Denise Zarins
  • Publication number: 20160100883
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Application
    Filed: October 8, 2015
    Publication date: April 14, 2016
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Publication number: 20160095659
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 7, 2016
    Inventors: Mark S. Leung, Benjamin J. Clark, Kenneth J. Michlitsch, Erik Thai, Andrew Wu, Denise Zarins
  • Publication number: 20160095655
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 7, 2016
    Inventors: Mark S. Leung, Benjamin J. Clark, Kenneth J. Michlitsch, Erik Thai, Andrew Wu, Denise Zarins
  • Publication number: 20160095654
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: October 21, 2015
    Publication date: April 7, 2016
    Inventors: Mark S. Leung, Benjamin J. Clark, Kenneth J. Michlitsch, Erik Thai, Andrew Wu, Denise Zarins
  • Publication number: 20160038212
    Abstract: Catheter apparatuses, systems, and methods for cryogenically modulating neural structures of the renal plexus by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a cryo-applicator to a renal artery via an intravascular path. Cryogenic renal neuromodulation may be achieved via application of cryogenic temperatures to modulate neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: July 15, 2015
    Publication date: February 11, 2016
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Eric Ryba, Naomi Buckley, Benjamin J. Clark, Danny Donovan, Luke Hughes, Brian Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Roman Turovskiy, Lana Wooley, Denise Zarins, Mark Gelfand, Mark S. Leung
  • Publication number: 20160023022
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: Denise Zarins, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20160000498
    Abstract: Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.
    Type: Application
    Filed: April 1, 2015
    Publication date: January 7, 2016
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Nicolas Zadno, Benjamin J. Clark, Andrew Wu, Kenneth J. Michlitsch
  • Publication number: 20150351833
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 10, 2015
    Inventors: Justin Goshgarian, Benjamin J. Clark, Rajeshkumar Dhamodharasamy, Mark S. Leung, Maria G. Aboytes
  • Patent number: 9186213
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: November 17, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Patent number: 9186198
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 17, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Demarais, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20150238253
    Abstract: Apparatus, systems, and methods for achieving thermally-induced renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a thermal element to a renal artery via an intravascular path. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: March 3, 2015
    Publication date: August 27, 2015
    Inventors: Andrew Wu, Benjamin J. Clark, Denise Zarins, Erik Thai
  • Patent number: 9084610
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: July 21, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Justin Goshgarian, Benjamin J. Clark, Rajeshkumar Dhamodharasamy, Mark S. Leung, Maria G. Aboytes
  • Patent number: 9072527
    Abstract: Methods and apparatus are provided for renal neuromodulation using a pulsed electric field to effectuate electroporation or electrofusion. It is expected that renal neuromodulation (e.g., denervation) may, among other things, reduce expansion of an acute myocardial infarction, reduce or prevent the onset of morphological changes that are affiliated with congestive heart failure, and/or be efficacious in the treatment of end stage renal disease. Embodiments of the present invention are configured for extravascular delivery of pulsed electric fields to achieve such neuromodulation.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: July 7, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Mark Deem, Denise Zarins, Douglas Sutton, Hanson Gifford, III, Howard R. Levin, Mark Gelfand, Benjamin J. Clark
  • Patent number: 9060754
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment includes an elongated shaft and a cooling assembly at a distal portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site within or otherwise proximate a renal artery. The cryotherapeutic device can further include a supply lumen configured to carry liquid refrigerant toward the cooling assembly. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: June 23, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20150164583
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Application
    Filed: December 17, 2014
    Publication date: June 18, 2015
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: DENISE ZARINS, BENJAMIN J. CLARK, NICOLAS ZADNO, HANSON GIFFORD, III, ERIK THAI
  • Patent number: 9023037
    Abstract: Methods and apparatus are provided for non-continuous circumferential treatment of a body lumen. Apparatus may be positioned within a body lumen of a patient and may deliver energy at a first lengthwise and angular position to create a less-than-full circumferential treatment zone at the first position. The apparatus also may deliver energy at one or more additional lengthwise and angular positions within the body lumen to create less-than-full circumferential treatment zone(s) at the one or more additional positions that are offset lengthwise and angularly from the first treatment zone. Superimposition of the first treatment zone and the one or more additional treatment zones defines a non-continuous circumferential treatment zone without formation of a continuous circumferential lesion. Various embodiments of methods and apparatus for achieving such non-continuous circumferential treatment are provided.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: May 5, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III, Mark Deem, Nicolas Zadno, Benjamin J. Clark, Andrew Wu, Kenneth J. Michlitsch
  • Publication number: 20150088113
    Abstract: Cryotherapeutic devices for renal neuromodulation and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having a distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator having a distributor in fluid communication with the supply lumen and a balloon configured to deliver cryotherapeutic cooling to nerves proximate the treatment site when the cooling assembly is in a deployed state.
    Type: Application
    Filed: March 1, 2013
    Publication date: March 26, 2015
    Applicant: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Benjamin J. Clark, David J. Hobbins, Tim Huynh, Grace Kelly, Brian Kelly
  • Patent number: 8986294
    Abstract: Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 24, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.rl.
    Inventors: Denise Demarais, Nicolas Zadno, Benjamin J. Clark, Erik Thai, Howard R. Levin, Mark Gelfand
  • Publication number: 20150057654
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver an energy delivery element to a renal artery via an intravascular path. Thermal or electrical renal neuromodulation may be achieved via direct and/or via indirect application of thermal and/or electrical energy to heat or cool, or otherwise electrically modulate, neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: June 26, 2014
    Publication date: February 26, 2015
    Inventors: Mark S. Leung, Benjamin J. Clark, Kenneth J. Michlitsch, Erik Thai, Andrew Wu, Denise Zarins