Patents by Inventor Benjamin J. Egg

Benjamin J. Egg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10998985
    Abstract: A method of increasing reliability of a wireless radio includes: creating a first waveform at a first center frequency of an encoded data stream using a first wireless radio; creating a second waveform at a second center frequency of the encoded data stream using the first wireless radio; combining the first waveform and the second waveform into a composite waveform with redundant data streams at different center frequencies using the first wireless radio; wirelessly transmitting the composite waveform using the first wireless radio; wirelessly receiving the composite waveform; filtering the received composite waveform using a first filter band; digitizing the received composite waveform using the second wireless radio; demodulating the digitized composite waveform into a first data stream and a second data stream with the second wireless radio; and creating a third data stream representative of the encoded data stream.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 4, 2021
    Inventor: Benjamin J. Egg
  • Patent number: 10873404
    Abstract: A method for finding an orthogonal direction of a radiation source with respect a digitally optimized interference pattern of a first fixed electromagnetic element and a second fixed electromagnetic element has been established. Determining a direction of a radiation source allows for dynamic control of moving object.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: December 22, 2020
    Inventor: Benjamin J. Egg
  • Publication number: 20200366383
    Abstract: A system and method of improving data link performance between two or more wireless data transceivers includes: clipping and inverting the data components of a communication signal which are calculated to cause non-linear saturation effects in the downstream power amplifier; delaying a first time series to align the first time series with the clipped and inverted data components of a second time series; adding the clipped and inverted data components of the second time series to the delayed first time series to obtain a modified composite waveform; creating a sacrificial band containing principal energy of the clipped and inverted data components of the second time series; harvesting the principal energy of the sacrificial band to obtain an optimized composite waveform; and causing the composite waveform to produce non-linear distortion to optimize the harvested principal energy.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 19, 2020
    Inventor: Benjamin J. Egg
  • Patent number: 10742333
    Abstract: A method of creating a dynamically sharp location based filter includes: placing a moving object containing two or more antennas used for direction finding of a radiation source within a anechoic testing chamber; moving one or more radio transmitters within the anechoic chamber relative to a future spatial location, angle, and/or position of the moving object over a defined time; record an expected angle of arrival of one or more signals of the one or more radio transmitters with respect to the future spatial location, angle, and/or position of the moving object over the defined time; and program a filter within the moving object based on the recorded expected angle of arrival of the one or more signals.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: August 11, 2020
    Inventor: Benjamin J. Egg
  • Patent number: 10727957
    Abstract: A system and method of improving data link performance between two or more wireless data transceivers includes: clipping and inverting the data components of a communication signal which are calculated to cause non-linear saturation effects in the downstream power amplifier; delaying a first time series to align the first time series with the clipped and inverted data components of a second time series; adding the clipped and inverted data components of the second time series to the delayed first time series to obtain a modified composite waveform; creating a sacrificial band containing principal energy of the clipped and inverted data components of the second time series; harvesting the principal energy of the sacrificial band to obtain an optimized composite waveform; and amplifying the optimized composite waveform with the downstream power amplifier of one or more of the two or more wireless data transceivers.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: July 28, 2020
    Inventor: Benjamin J. Egg
  • Patent number: 10547394
    Abstract: A method of increasing reliability of a wireless radio includes: creating a first waveform at a first center frequency of an encoded data stream using a first wireless radio; creating a second waveform at a second center frequency of the encoded data stream using the first wireless radio; combining the first waveform and the second waveform into a composite waveform with redundant data streams at different center frequencies using the first wireless radio; wirelessly transmitting the composite waveform using the first wireless radio; wirelessly receiving the composite waveform; filtering the received composite waveform using a first filter band; digitizing the received composite waveform using the second wireless radio; demodulating the digitized composite waveform into a first data stream and a second data stream with the second wireless radio; and creating a third data stream representative of the encoded data stream.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 28, 2020
    Inventor: Benjamin J. Egg
  • Publication number: 20190372682
    Abstract: A system and method of improving data link performance between two or more wireless data transceivers includes: clipping and inverting the data components of a communication signal which are calculated to cause non-linear saturation effects in the downstream power amplifier; delaying a first time series to align the first time series with the clipped and inverted data components of a second time series; adding the clipped and inverted data components of the second time series to the delayed first time series to obtain a modified composite waveform; creating a sacrificial band containing principal energy of the clipped and inverted data components of the second time series; harvesting the principal energy of the sacrificial band to obtain an optimized composite waveform; and amplifying the optimized composite waveform with the downstream power amplifier of one or more of the two or more wireless data transceivers.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventor: Benjamin J. Egg
  • Publication number: 20190339353
    Abstract: A method of creating a dynamically sharp location based filter includes: placing a moving object containing two or more antennas used for direction finding of a radiation source within a anechoic testing chamber; moving one or more radio transmitters within the anechoic chamber relative to a future spatial location, angle, and/or position of the moving object over a defined time; record an expected angle of arrival of one or more signals of the one or more radio transmitters with respect to the future spatial location, angle, and/or position of the moving object over the defined time; and program a filter within the moving object based on the recorded expected angle of arrival of the one or more signals.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 7, 2019
    Inventor: Benjamin J. Egg
  • Patent number: 10382145
    Abstract: A system and method of improving data link performance between two or more wireless data transceivers includes: clipping and inverting the data components of a communication signal which are calculated to cause non-linear saturation effects in the downstream power amplifier; delaying a first time series to align the first time series with the clipped and inverted data components of a second time series; adding the clipped and inverted data components of the second time series to the delayed first time series to obtain a modified composite waveform; creating a sacrificial band containing principal energy of the clipped and inverted data components of the second time series; combining the sacrificial band to the modified composite waveform in non-overlapping signal space to obtain an optimized composite waveform; and amplifying the optimized composite waveform with the downstream power amplifier of one or more of the two or more wireless data transceivers.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: August 13, 2019
    Inventor: Benjamin J. Egg
  • Publication number: 20190140748
    Abstract: A system and method of improving data link performance between two or more wireless data transceivers includes: clipping and inverting the data components of a communication signal which are calculated to cause non-linear saturation effects in the downstream power amplifier; delaying a first time series to align the first time series with the clipped and inverted data components of a second time series; adding the clipped and inverted data components of the second time series to the delayed first time series to obtain a modified composite waveform; creating a sacrificial band containing principal energy of the clipped and inverted data components of the second time series; combining the sacrificial band to the modified composite waveform in non-overlapping signal space to obtain an optimized composite waveform; and amplifying the optimized composite waveform with the downstream power amplifier of one or more of the two or more wireless data transceivers.
    Type: Application
    Filed: July 13, 2018
    Publication date: May 9, 2019
    Inventor: Benjamin J. Egg
  • Publication number: 20190140736
    Abstract: A method of increasing reliability of a wireless radio includes: creating a first waveform at a first center frequency of an encoded data stream using a first wireless radio; creating a second waveform at a second center frequency of the encoded data stream using the first wireless radio; combining the first waveform and the second waveform into a composite waveform with redundant data streams at different center frequencies using the first wireless radio; wirelessly transmitting the composite waveform using the first wireless radio; wirelessly receiving the composite waveform; filtering the received composite waveform using a first filter band; digitizing the received composite waveform using the second wireless radio; demodulating the digitized composite waveform into a first data stream and a second data stream with the second wireless radio; and creating a third data stream representative of the encoded data stream.
    Type: Application
    Filed: July 13, 2018
    Publication date: May 9, 2019
    Inventor: Benjamin J. Egg
  • Publication number: 20190137593
    Abstract: A method for finding an orthogonal direction of a radiation source with respect a digitally optimized interference pattern of a first fixed electromagnetic element and a second fixed electromagnetic element has been established. Determining a direction of a radiation source allows for dynamic control of moving object.
    Type: Application
    Filed: July 13, 2018
    Publication date: May 9, 2019
    Inventor: Benjamin J. Egg