Patents by Inventor Benjamin Luey

Benjamin Luey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10976579
    Abstract: A liquid crystal waveguide (LCW) can include actively controlled incoupling of light into a LCW, such as by using a voltage-controlled electrode to actively vary a property of an LC material arranged to affect the incoupling of light into the LCW. Actively varying light incoupling into the LCW can be used, for example, such as for calibration or compensation or to provide closed-loop feedback such as to stabilize the amount of light into the LCW while accommodating or reducing sensitivity of the LCW to variations in one or more of: input laser light incidence angle, input laser wavelength, LCW or input laser temperature, input laser optical power level, or the like. This can advantageously help improve or maximize light incoupling efficiency, which can improve performance and robustness of the LCW under actual operating conditions. The LCW can be used for, among other things, beamsteering in in-plane and out-of-plane directions.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: April 13, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Scott D. Rommel, Benjamin Luey, Michael Howard Anderson, Derek Gann
  • Publication number: 20200050034
    Abstract: A liquid crystal waveguide (LCW) can include actively controlled incoupling of light into a LCW, such as by using a voltage-controlled electrode to actively vary a property of an LC material arranged to affect the incoupling of light into the LCW. Actively varying light incoupling into the LCW can be used, for example, such as for calibration or compensation or to provide closed-loop feedback such as to stabilize the amount of light into the LCW while accommodating or reducing sensitivity of the LCW to variations in one or more of: input laser light incidence angle, input laser wavelength, LCW or input laser temperature, input laser optical power level, or the like. This can advantageously help improve or maximize light incoupling efficiency, which can improve performance and robustness of the LCW under actual operating conditions. The LCW can be used for, among other things, beamsteering in in-plane and out-of-plane directions.
    Type: Application
    Filed: August 9, 2018
    Publication date: February 13, 2020
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Scott D. Rommel, Benjamin Luey, Michael Howard Anderson, Derek Gann
  • Publication number: 20200019037
    Abstract: An electro-optical beamsteerer can be coupled with other optical structures. For example, such optical structures can be used to shape a beam being steered by the beamsteerer or shape a field-of-regard (FOR) addressable from the perspective of the beamsteerer. Optical elements placed at an output of the LCW can be used as a “spot mapper” to increase or decrease the field of view that can be scanned by a beam steered by the LCW, as an illustrative example, Lenses or other optical elements can also be used to correct distortion in the steered beam distribution across the field of view, such as to provide a “smile corrector.” In a similar manner, optical elements can be placed at an input to the beamsteerer, such as to provide a beam expander to change the size of the beam profile inside the beamsteerer device.
    Type: Application
    Filed: June 21, 2019
    Publication date: January 16, 2020
    Inventors: Michael Ziemkiewicz, Scott Robert Davis, Joseph D. Gamble, Michael Howard Anderson, Benjamin Luey
  • Publication number: 20190369216
    Abstract: A system and method for providing a dynamic composite field of view in a scanning lidar system, such as to improve a signal-to-noise ration of detected light. The dynamic composite field of view can include a subset of the available detector pixels, and can thereby reduce noise introduce by noise sources that can scale with a detector area, such as dark current and gain peaking that can be caused by a capacitance of the photodetector.
    Type: Application
    Filed: January 24, 2018
    Publication date: December 5, 2019
    Inventors: Michael Howard Anderson, Scott Robert Davis, Benjamin Luey
  • Patent number: 10133083
    Abstract: A non-mechanical beamsteerer can be provided to adjust an angle of a light beam, such as to scan the light beam over a field of regard. The non-mechanical beamsteerer can include a first collection of steering elements that are smaller than a size of a light beam. The first collection of steering elements can adjust the angle of the light beam by diffracting the light beam. The non-mechanical beamsteerer can also include a second collection of steering elements that are larger than a size of the light beam. The second collection of steering elements can adjust an angle of the light beam by refracting the light beam. The non-mechanical beamsteerer can operate without a compensation plate, such as to provide a reduced size of the beamsteerer and an increased acceptance angle of the beamsteerer.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: November 20, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Michael Howard Anderson, Scott Robert Davis, Benjamin Luey, Tyler Adam Dunn
  • Publication number: 20180306905
    Abstract: A system and method for providing a dynamic region of interest in a lidar system can include scanning a light beam over a field of view to capture a first lidar image, identifying a first object within the captured first lidar image, selecting a first region of interest within the field of view that contains at least a portion of the identified first object, and capturing a second lidar image, where capturing the second lidar image includes scanning the light beam over the first region of interest at a first spatial sampling resolution, and scanning the light beam over the field of view outside of the first region of interest at a second spatial sampling resolution, wherein the second sampling resolution is less than the first spatial sampling resolution.
    Type: Application
    Filed: April 20, 2017
    Publication date: October 25, 2018
    Inventors: Ronald A. Kapusta, Benjamin Luey, Harvy Weinberg, Scott R. Davis, Michael H. Anderson, Scott D. Rommel