Patents by Inventor Benjamin N. Eldridge

Benjamin N. Eldridge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084452
    Abstract: A tray for a vaporization vessel that includes a tray having a side wall, a bottom plate, one or more apertures that extend through the bottom plate, and a duct that extends through and from the bottom plate. The tray configured to support a solid reagent to be vaporized. A method of assembling the tray that includes forming a first tray that has the side wall and the bottom plate. A vaporization vessel that includes one or more of the trays.
    Type: Application
    Filed: October 13, 2023
    Publication date: March 14, 2024
    Inventors: Bryan C. HENDRIX, Scott L. Battle, David J. Eldridge, John N. Gregg, Jacob Thomas, Manuel F. Gonzales, Kenney R. Jordan, Benjamin H. Olson
  • Patent number: 11460485
    Abstract: Improved electrically conductive guide plates for vertical probe arrays are provided by patterning a thin metal layer disposed on an insulating substrate. Holes passing through the guide plate for guiding probes can be electrically connected or isolated from each other in any pattern according to the deposition of the metal. Such structures can include several distinct ground and/or voltage planes. Furthermore, passive electrical components can be included in the guide plate, by patterning of the deposited metal and/or by integration of passive electrical components with the deposited metal traces.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: October 4, 2022
    Assignee: FormFactor, Inc.
    Inventors: Jason William Cosman, Benjamin N. Eldridge, Eric Hill, John Ebner, Edin Sijercic
  • Patent number: 10598697
    Abstract: Crosstalk between probes in a vertical probe array is reduced by providing a grounded metal carrier disposed between the guide plates of the probe array. The metal carrier includes pockets that are laterally separated from each other by the metal carrier. Probes in different pockets are thereby electrically shielded from each other.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: March 24, 2020
    Assignee: FormFactor, Inc.
    Inventor: Benjamin N. Eldridge
  • Patent number: 10578649
    Abstract: Vertical probe heads having a space transformer laterally tiled into several sections are provided. This change relative to conventional approaches improves manufacturing yield. These probe heads can include metal ground planes, and in embodiments where the ground planes are provided as separate metal plates parallel to the guide plates, the metal plates can also be laterally tiled into several sections. Such tiling of metal plates improves manufacturing yield and alleviates thermal mismatch issues. Probes are not mechanically connected to the space transformer, which facilitates replacement of individual probes of an array.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 3, 2020
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Masanori Watanabe, Scott Kuhnert, Jeffrey Coussens
  • Patent number: 10527647
    Abstract: Improved impedance matching is provided in vertical probe arrays having conductive guide plates by providing ground pins connecting the guide plates that do not mechanically touch the device under test or the input test apparatus. Such ground pins can be disposed in predetermined patterns around corresponding signal probes to improve an impedance match between the probes and the test apparatus and/or the device under test. Preferably all impedances are matched to 50? as is customary for high frequency work.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 7, 2020
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Edin Sijercic, Eric Hill, John Ebner
  • Publication number: 20190120876
    Abstract: Improved electrically conductive guide plates for vertical probe arrays are provided by patterning a thin metal layer disposed on an insulating substrate. Holes passing through the guide plate for guiding probes can be electrically connected or isolated from each other in any pattern according to the deposition of the metal. Such structures can include several distinct ground and/or voltage planes. Furthermore, passive electrical components can be included in the guide plate, by patterning of the deposited metal and/or by integration of passive electrical components with the deposited metal traces.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 25, 2019
    Inventors: Jason William Cosman, Benjamin N. Eldridge, Eric Hill, John Ebner, Edin Sijercic
  • Patent number: 10266402
    Abstract: Electrically conductive columns of intertwined carbon nanotubes embedded in a mass of material flexible, resilient electrically insulating material can be used as electrically conductive contact probes. The columns can extend between opposing sides of the mass of material. Terminals of a wiring substrate can extend into the columns and be electrically connected to an electrical interface to a tester that controls testing of a device under test. A pair of physically interlocked structures can coupling the mass of material to the wiring substrate. The pair can include a receptacle and a protrusion.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: April 23, 2019
    Assignee: FormFactor, Inc.
    Inventors: Onnik Yaglioglu, Benjamin N. Eldridge, Alexander Slocum
  • Publication number: 20190064220
    Abstract: Vertical probe heads having a space transformer laterally tiled into several sections are provided. This change relative to conventional approaches improves manufacturing yield. These probe heads can include metal ground planes, and in embodiments where the ground planes are provided as separate metal plates parallel to the guide plates, the metal plates can also be laterally tiled into several sections. Such tiling of metal plates improves manufacturing yield and alleviates thermal mismatch issues. Probes are not mechanically connected to the space transformer, which facilitates replacement of individual probes of an array.
    Type: Application
    Filed: August 29, 2018
    Publication date: February 28, 2019
    Inventors: Benjamin N. Eldridge, Masanori Watanabe, Scott Kuhnert, Jeffrey Coussens
  • Patent number: 10132833
    Abstract: A multiple conduction path probe can provide an electrically conductive signal path from a first contact end to a second contact end. The probe can also include an electrically conductive secondary path and an electrically insulated gap between the signal path and the secondary path. A probe assembly can comprise multiple such probes disposed in passages in substantially parallel electrically conductive guide plates. In some configurations, the probe assembly can include one or more secondary probes disposed in passages of the conductive guide plates and electrically connected to one or both of the guide plates. Some of the probes can be electrically insulated from the guide plates and thus provide signal paths, and others of the probes can be electrically connected to the guide plates and thus provide secondary paths.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: November 20, 2018
    Assignee: FormFactor, Inc.
    Inventor: Benjamin N. Eldridge
  • Publication number: 20180299486
    Abstract: Improved impedance matching is provided in vertical probe arrays having conductive guide plates by providing ground pins connecting the guide plates that do not mechanically touch the device under test or the input test apparatus. Such ground pins can be disposed in predetermined patterns around corresponding signal probes to improve an impedance match between the probes and the test apparatus and/or the device under test. Preferably all impedances are matched to 50? as is customary for high frequency work.
    Type: Application
    Filed: June 22, 2018
    Publication date: October 18, 2018
    Inventors: Benjamin N. Eldridge, Edin Sijercic, Eric Hill, John Ebner
  • Publication number: 20180196086
    Abstract: Crosstalk between probes in a vertical probe array is reduced by providing a grounded metal carrier disposed between the guide plates of the probe array. The metal carrier includes pockets that are laterally separated from each other by the metal carrier. Probes in different pockets are thereby electrically shielded from each other.
    Type: Application
    Filed: January 11, 2018
    Publication date: July 12, 2018
    Inventor: Benjamin N. Eldridge
  • Patent number: 9958476
    Abstract: A test socket for facilitating testing of a device under test (DUT) includes a holder comprising a mounting structure for attaching the holder to other components of the socket and a floating nest structure in which the DUT can be disposed. The floating nest structure can have a seat cavity sized and shaped to receive and hold the DUT such that at least some of the DUT terminals are in contact with corresponding contacts of a test board while the test socket is attached to the test board. A flexure located laterally between the mounting structure and the floating nest structure and can allow the nest structure to move relative to the mounting structure and thus float.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: May 1, 2018
    Assignee: FormFactor, Inc.
    Inventor: Benjamin N. Eldridge
  • Patent number: 9702904
    Abstract: An electrically conductive contact element can include a first base and a second base with elongate, spaced apart leaves between the bases. A first end of each leaf can be coupled to the first base and an opposite second end of the leaf can be coupled to the second base. A body of the leaf between the first end and the second end can be sufficiently elongate to respond to a force through said contact element substantially parallel with the first axis and the second axis by first compressing axially while said force is less than a buckling force and then bending while said force is greater than the buckling force.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: July 11, 2017
    Assignee: FormFactor, Inc.
    Inventors: Keith J. Breinlinger, Benjamin N. Eldridge, Eric D. Hobbs, Michael J. Armstrong, John K. Gritters
  • Publication number: 20170146566
    Abstract: A test socket for facilitating testing of a device under test (DUT) includes a holder comprising a mounting structure for attaching the holder to other components of the socket and a floating nest structure in which the DUT can be disposed. The floating nest structure can have a seat cavity sized and shaped to receive and hold the DUT such that at least some of the DUT terminals are in contact with corresponding contacts of a test board while the test socket is attached to the test board. A flexure located laterally between the mounting structure and the floating nest structure and can allow the nest structure to move relative to the mounting structure and thus float.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 25, 2017
    Inventor: Benjamin N. Eldridge
  • Patent number: 9030222
    Abstract: An apparatus and method providing improved interconnection elements and tip structures for effecting pressure connections between terminals of electronic components is described. The tip structure of the present invention has a sharpened blade oriented on the upper surface of the tip structure such that the length of the blade is substantially parallel to the direction of horizontal movement of the tip structure as the tip structure deflects across the terminal of an electronic component. In this manner, the sharpened substantially parallel oriented blade slices cleanly through any non-conductive layer(s) on the surface of the terminal and provides a reliable electrical connection between the interconnection element and the terminal of the electrical component.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: May 12, 2015
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Alex Madsen, Gaetan L. Mathieu
  • Publication number: 20150015289
    Abstract: A multiple conduction path probe can provide an electrically conductive signal path from a first contact end to a second contact end. The probe can also include an electrically conductive secondary path and an electrically insulated gap between the signal path and the secondary path. The gap can be relatively small and thus provide the probe with a low loop inductance. A probe assembly can comprise multiple such probes disposed in passages in substantially parallel electrically conductive guide plates. The signal path of each of the probes can be electrically insulated from both guide plates, but the secondary path of each probe can be electrically connected to one or both of the guide plates. In some configurations, the probe assembly can include one or more secondary probes disposed in passages of the conductive guide plates and electrically connected to one or both of the guide plates.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 15, 2015
    Inventor: Benjamin N. Eldridge
  • Patent number: 8896336
    Abstract: Techniques for testing an electronic device with through-device vias can include using a probe card assembly with probes for contacting connection structures of the electronic device including ends of through-device vias of the electronic device. A pair of the probes can be electrically connected in the probe card assembly and can thus contact and form a direct return loop from one through-device via to another through-device via of a pair of the through-device vias with which the pair of probes is in contact. The electronic device can include test circuitry for driving a test signal onto the one of the through-device vias and a receiver for detecting the test signal on the other of the through-device vias.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: November 25, 2014
    Assignee: FormFactor, Inc.
    Inventor: Benjamin N. Eldridge
  • Publication number: 20140139250
    Abstract: Electrically conductive columns of intertwined carbon nanotubes embedded in a mass of material flexible, resilient electrically insulating material can be used as electrically conductive contact probes. The columns can extend between opposing sides of the mass of material. Terminals of a wiring substrate can extend into the columns and be electrically connected to an electrical interface to a tester that controls testing of a device under test. A pair of physically interlocked structures can coupling the mass of material to the wiring substrate. The pair can include a receptacle and a protrusion.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: FORMFACTOR, INC.
    Inventors: Onnik Yaglioglu, Benjamin N. Eldridge, Alexander Slocum
  • Patent number: 8697301
    Abstract: A fuel cell comprises an anode, a cathode, and a proton exchange membrane. The anode and cathode can include a catalyst layer which includes a plurality of generally aligned carbon nanotubes. Methods of making a fuel cell are also disclosed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: April 15, 2014
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, John K. Gritters, Onnik Yaglioglu
  • Patent number: 8513969
    Abstract: An exemplary die carrier is disclosed. In some embodiments, the die carrier can hold a plurality of singulated dies while the dies are tested. The dies can be arranged on the carrier in a pattern that facilities testing the dies. The carrier can be configured to allow interchangeable interfaces to different testers to be attached to and detached from the carrier. The carrier can also be configured as a shipping container for the dies.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 20, 2013
    Assignee: FormFactor, Inc.
    Inventors: Thomas H. Dozier, II, Benjamin N. Eldridge, David H. Hsu, Igor Y. Khandros, Charles A. Miller