Patents by Inventor Benjamin Todd Renneberg

Benjamin Todd Renneberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230187969
    Abstract: Dual-mode active/passive wireless power receiver clients, and associated systems, methods and computer readable media. A system includes means for determining whether or not a radio frequency (RF) field at an antenna meets an ambient threshold in a wireless power delivery environment. The system also includes means for receiving wireless power from a wireless power source in the wireless power delivery environment when the RF field meets or exceeds the ambient threshold. The system further includes means for harvesting ambient energy from the wireless power delivery environment when the RF field is below the ambient threshold.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 15, 2023
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 11626754
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: April 11, 2023
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Publication number: 20210408833
    Abstract: A circuit includes power reception circuitry to convert an RF signal to a direct current signal for transmission to an energy storage device and/or an electronic device associated with the circuit. The circuit includes voltage regulator circuitry to regulate an output voltage of the circuit based on an internal state thereof. A method incudes receiving, by at least one antenna, the RF signal. The method includes converting, by the circuit coupled to the antenna, the RF signal to a direct current signal. The method includes transmitting the DC signal to the energy storage device and/or the electronic device. The method includes determining the internal state of the circuit. The method includes regulating the output voltage of the circuit based on the internal state. Embodiments enable the addition of wireless charging functionality to existing electronic devices without extensive internal and/or external redesign.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 11146093
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses that actively regulate output voltage of wirelessly chargeable energy storage devices, e.g., wirelessly chargeable batteries. More specifically, techniques are described to emulate low-battery behavior of a standard battery, e.g., a typical AA battery, based on an internal state of the apparatus. The internal state can be determined based on commands provided by or to the apparatus or based on analog information such as, for example, an internal charge state, e.g., of a lithium-ion battery or capacitor.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: October 12, 2021
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Publication number: 20210242723
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
    Type: Application
    Filed: April 23, 2021
    Publication date: August 5, 2021
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 11025080
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: June 1, 2021
    Assignee: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Publication number: 20210049975
    Abstract: A wirelessly powered electronic display apparatus and techniques for dynamically controlling the apparatus are described herein. More specifically, the electronic display apparatus is configured identify proximate users and automatically present communications to the proximate users in a wireless power delivery environment. In some embodiments, the apparatus comprises a housing, an electronic display disposed on the housing, one or more antennas situated within the housing and electronic circuitry situated within the housing. The electronic display is configured to present display data to proximate users in the wireless power delivery environment. The one or more antennas are configured to wirelessly receive power and data signals. The electronic circuitry is configured to harvest energy from the power signals, process the data signals to determine the display data for presentation to the proximate users, and direct the electronic display to present the display data to the proximate users.
    Type: Application
    Filed: November 2, 2020
    Publication date: February 18, 2021
    Applicant: Ossia Inc.
    Inventors: Fady El-Rukby, Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 10825417
    Abstract: A wirelessly powered electronic display apparatus and techniques for dynamically controlling the apparatus are described herein. More specifically, the electronic display apparatus is configured identify proximate users and automatically present communications to the proximate users in a wireless power delivery environment. In some embodiments, the apparatus comprises a housing, an electronic display disposed on the housing, one or more antennas situated within the housing and electronic circuitry situated within the housing. The electronic display is configured to present display data to proximate users in the wireless power delivery environment. The one or more antennas are configured to wirelessly receive power and data signals. The electronic circuitry is configured to harvest energy from the power signals, process the data signals to determine the display data for presentation to the proximate users, and direct the electronic display to present the display data to the proximate users.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: November 3, 2020
    Assignee: Ossia Inc.
    Inventors: Fady El-Rukby, Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Patent number: 10574081
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: February 25, 2020
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Patent number: 10181760
    Abstract: Techniques are described for authenticating device in wireless power delivery environments. In some embodiments, a request for energy delivery is received from devices. The request may include an identifier, e.g., a client identification (ID). The charger may query a remotely located authentication platform via a network with the client ID. The authentication platform compares the client ID against devices that have been registered within the system. If the device is properly provisioned, the authentication platform may return an acceptance of authentication to the charger. In addition to device authentication, the current disclosure covers the ability to control the environment within a wireless network, and perform system diagnostics by monitoring the network environment.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: January 15, 2019
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Benjamin Todd Renneberg, Fady El-Rukby
  • Publication number: 20180287418
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 4, 2018
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Publication number: 20180287417
    Abstract: Embodiments of the present disclosure describe systems, methods, and apparatuses that actively regulate output voltage of wirelessly chargeable energy storage devices, e.g., wirelessly chargeable batteries. More specifically, techniques are described to emulate low-battery behavior of a standard battery, e.g., a typical AA battery, based on an internal state of the apparatus. The internal state can be determined based on commands provided by or to the apparatus or based on analog information such as, for example, an internal charge state, e.g., of a lithium-ion battery or capacitor.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 4, 2018
    Applicant: Ossia Inc.
    Inventors: Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Publication number: 20170187249
    Abstract: The disclosed system utilizes multiple wireless power receivers (antennas and or paths) for receiving power. The disclosed system includes a chip, such as an application specific chip (ASICs) connectable to multiple antennas and units to convert radio frequency (RF) power into direct current (DC) power. The disclosed system can also include antennas that are used to receiving power, communicate, and send a beacon signal. The disclosed system also comprises a mobile electronic device to receive wireless power using multiple antennas connected or coupled to multiple wireless power receivers.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20170187231
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Patent number: 9632554
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 25, 2017
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20170110910
    Abstract: Techniques are described for authenticating device in wireless power delivery environments. In some embodiments, a request for energy delivery is received from devices. The request may include an identifier, e.g., a client identification (ID). The charger may query a remotely located authentication platform via a network with the client ID. The authentication platform compares the client ID against devices that have been registered within the system. If the device is properly provisioned, the authentication platform may return an acceptance of authentication to the charger. In addition to device authentication, the current disclosure covers the ability to control the environment within a wireless network, and perform system diagnostics by monitoring the network environment.
    Type: Application
    Filed: October 19, 2016
    Publication date: April 20, 2017
    Inventors: Hatem Zeine, Benjamin Todd Renneberg, Fady El-Rukby
  • Patent number: 9620996
    Abstract: The disclosed system utilizes multiple wireless power receivers (antennas and or paths) for receiving power. The disclosed system includes a chip, such as an application specific chip (ASICs) connectable to multiple antennas and units to convert radio frequency (RF) power into direct current (DC) power. The disclosed system can also include antennas that are used to receiving power, communicate, and send a beacon signal. The disclosed system also comprises a mobile electronic device to receive wireless power using multiple antennas connected or coupled to multiple wireless power receivers.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: April 11, 2017
    Assignee: Ossia Inc.
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20160301259
    Abstract: The disclosed system utilizes multiple wireless power receivers (antennas and or paths) for receiving power. The disclosed system includes a chip, such as an application specific chip (ASICs) connectable to multiple antennas and units to convert radio frequency (RF) power into direct current (DC) power. The disclosed system can also include antennas that are used to receiving power, communicate, and send a beacon signal. The disclosed system also comprises a mobile electronic device to receive wireless power using multiple antennas connected or coupled to multiple wireless power receivers.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams
  • Publication number: 20160300547
    Abstract: A wirelessly powered electronic display apparatus and techniques for dynamically controlling the apparatus are described herein. More specifically, the electronic display apparatus is configured identify proximate users and automatically present communications to the proximate users in a wireless power delivery environment. In some embodiments, the apparatus comprises a housing, an electronic display disposed on the housing, one or more antennas situated within the housing and electronic circuitry situated within the housing. The electronic display is configured to present display data to proximate users in the wireless power delivery environment. The one or more antennas are configured to wirelessly receive power and data signals. The electronic circuitry is configured to harvest energy from the power signals, process the data signals to determine the display data for presentation to the proximate users, and direct the electronic display to present the display data to the proximate users.
    Type: Application
    Filed: November 19, 2015
    Publication date: October 13, 2016
    Inventors: Fady El-Rukby, Hatem Ibrahim Zeine, Benjamin Todd Renneberg
  • Publication number: 20160299549
    Abstract: Various techniques are described herein for calculating power consumption in wireless delivery systems. In one example, power consumption is calculated by receiving information associated with at least one portable device, identifying a discharge/charge curve associated with at least one battery in the at least one portable device, and calculating power consumption of the least one portable device based at least in part on the received information and the identified discharge/charge curve.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Inventors: Hatem Zeine, Anas Alfarra, Dale Mayes, Fady El-Rukby, Samy Mahmoud, John B. Springer, Benjamin Todd Renneberg, Prithvi Shylendra, Anthony L. Johnson, Douglas Wayne Williams