Patents by Inventor Bernard Arambepola

Bernard Arambepola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140169434
    Abstract: An approach is provided to mitigate phase noise by correcting common phase error and inter-carrier-interference in a received signal. The approach involves determining a received signal includes phase noise comprising at least a common phase error component and an inter-carrier-interference component. The approach also involves causing the common phase error to be corrected based on one or more pilot carriers. The approach further involves causing an estimate of a main signal component to be subtracted from the one or more pilot carriers. The approach additionally involves determining a sequence of estimated coefficients of a multiplicative phase noise sequence. The approach also involves causing the inter-carrier-inference to be corrected by processing the multiplicative phase noise sequence using the sequence of estimated coefficients. The approach further involves causing an equalized data signal to be output based on the corrected common phase error and the corrected inter-carrier-interference.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Thushara Hewavithana, Bernard Arambepola
  • Publication number: 20140169188
    Abstract: A system and method are provided for implementing a peak-to-average power ratio (PAPR) reduction scheme for Orthogonal Frequency-Division Multiple Access (OFDMA) modulation. A unique PAPR reduction scheme for OFDMA modulation for systems operated according to a DOCSIS standard achieves results similar to those attributable to tone reservation schemes in a manner that does not negatively affect an amount of available data capacity, particularly in implementations with limited numbers of subcarriers. The disclosed systems and methods are particularly adaptable to next generation cable gateways and/or next generation cable modems. These next generation cable gateways and/or cable modems may find particular utility in advanced hybrid fiber/coaxial cable systems. The adaptable cable gateways/modems may include a cable gateway system-on-chip (SOC) configuration. The disclosed schemes may be applicable to OFDM modulation. For OFDM, however, the known tone reservation algorithms also may be employed.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Inventors: Bernard Arambepola, Parveen Shukla, Thushara Hewavithana, Sahan Gamage
  • Publication number: 20140169431
    Abstract: An apparatus may include a processor circuit, and a dynamic filter adjustment component for execution on the processor. The dynamic filter adjustment component may identify in a wideband communications signal a set of one or more interferer frequencies for one or more respective interferer channels of a set of communications channels to be filtered, select a kernel filter comprising a low pass filter having a channel width corresponding to a channel of the one or more interferer channels, and generate a co-channel interference (CCI) filter to stop the one or more interferer channels by inverting the kernel filter. Other embodiments are described and claimed.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Inventors: Bernard Arambepola, Thushara Hewavithana
  • Patent number: 8743977
    Abstract: Techniques for the reception and processing of wireless signals are disclosed. For instance, an apparatus may include a first hardware module (e.g., a mixed signal module) and a second hardware module (e.g., a digital signal module). The first hardware module may convert an analog signal corresponding to a received wireless signal into a digital signal having a first sampling rate. In turn, channel filtering may be performed on this digital signal. Following this, the filtered digital signal may be resampled from the first sampling rate to a second sampling rate. At this point, the resampled signal may be transferred across an interface from the first hardware module to the second hardware module. Upon receipt, the second hardware module may correct a sampling rate error in the second sampling rate, and demodulate the digital signal into one or more symbols.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 3, 2014
    Assignee: Intel Corporation
    Inventors: Bernard Arambepola, Nick Cowley
  • Publication number: 20140119420
    Abstract: Methods and systems to mitigate impulse interference in an OFDM QAM signal. A per-symbol noise measure, or quality measure (QM) is computed for a symbol k as a MSE of distances between carriers in the symbol and points of corresponding QAM constellations. MSE(k) is averaged over multiple symbols to compute a background signal QM, AVG_MSE(k). If MSE(k) exceeds AVG_MSE(k) by a moderate amount, symbol k may be moderately affected by impulse interference, and per-carrier SNR estimates are downgraded for all data carriers in symbol k, prior to LLR computation. SNR downgrading may be linear or step-wise based on an extent to which MSE(k) exceeds AVG_MSE(k). If MSE(k) exceeds AVG_MSE(k) by a significant amount, symbol k may be significantly affected by impulse interference, and LLRs may be set to indicate that all data carriers are erased in symbol k.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Inventors: Thushara Hewavithana, Bernard Arambepola, Sahan Gamage
  • Publication number: 20140064419
    Abstract: In an Orthogonal Frequency Division Multiplex (“OFDM”) system, the problem of an interferer reducing the signal-to-noise ratio of a signal can be mitigated by generating an interferer-correction signal and subtracting it from the signal to be processed. The amplitude, frequency and phase of the interferences are determined first. The frequency is estimated by averaging the squared-magnitude of multiple FFTs of the incoming signal and then locating the spectral peaks. The phase and amplitude may be estimated from this FFT outputs or through a process of correlation in the time domain. The interferer-correction signal is generated from the estimated amplitude, frequency, and phase. The correction to be subtracted from the main signal in order to reduce the effect of the interference may be generated in the time or frequency domain. The subtraction of the correction may also be implemented in the time or frequency domains.
    Type: Application
    Filed: August 28, 2012
    Publication date: March 6, 2014
    Inventors: Bernard Arambepola, Thushara Hewavithana
  • Publication number: 20140036157
    Abstract: An embodiment of the present invention provides a method for digital television demodulation, comprising using adjacent-channel power dependent automatic gain control (AGC) for the digital television demodulation, wherein an AGC technique takes into account a total power as well as power of adjacent channels to control gain of a gain control amplifier.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Inventors: Parveen K. Shukla, Bernard Arambepola, Thushara Hewavithana, Sahan Gamage
  • Publication number: 20140029708
    Abstract: Apparatuses, systems, and methods are directed to maintaining optimal carrier tracking performance in view of operating conditions that prevail. Such configurations employ a phase lock loop that configured to generate an estimated phase error value, a variance module configured to calculate a phase noise variance based on the estimated phase error value, and a loop control bandwidth module that calculates a loop bandwidth value based on a detected lower phase noise variance, generates modified loop filter values in accordance with the calculated loop bandwidth value, and updates the phase lock loop with the modified loop filter values. During subsequent iterations, the modified loop filter values are incrementally adjusted along a particular direction until the phase noise variance increases at which point the modified loop filter values are incrementally adjusted in an opposite direction to converge on an optimal loop bandwidth value.
    Type: Application
    Filed: February 28, 2012
    Publication date: January 30, 2014
    Applicant: INTEL CORPORATION
    Inventors: Thushara Hewavithana, Bernard Arambepola
  • Publication number: 20130343501
    Abstract: A system and method are described to provide a next generation cable gateway/modem based on the DOCSIS standard with a scheme to synchronously combine channels in the physical layer to increase overall bit rates for coaxial cable data transmission. The systems and methods synchronize the counters associated with multiple channels, including continuity counters, at the transmitter to zero and then allow the counters on individual channels to increment individually. At the receiver, individual channel delays of individual channels will be thus recognizable based on the information provided by the counters associated with each channel. A buffer at the receiver is informed and used to individually delay one or more of the multiple channels to many up continuity counter values. In this manner, the buffer acts to essentially equalize delays in individual channels with the continuity counter representing the mechanism for specifying the individual delays for the separate channels.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Inventors: Bernard Arambepola, Shaul Shulman, Naor Goldman, Amos Klimker, Noam Tal
  • Patent number: 8611407
    Abstract: According to various embodiments, apparatus and methods disclosed herein include computing phase error of a received signal based on an estimate of a first component (e.g., in-phase component) of a transmitted signal and an analytic representation of the estimate of the first component of the transmitted signal. The analytic representation of the estimate of the first component of the transmitted signal may represent an estimate of a second component (e.g., quadrature phase component) of the transmitted signal. The analytic representation of the estimated first component may be computed using at least one of a Hilbert transform or Fourier transform on the estimated first component of the transmitted signal.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: December 17, 2013
    Assignee: Intel Corporation
    Inventors: Bernard Arambepola, Thushara Hewavithana, Sahan S. Gamage, Parveen K. Shukla
  • Patent number: 8606209
    Abstract: Embodiments of systems and methods for the efficient implementation of tuners are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: December 10, 2013
    Assignee: Intel Corporation
    Inventors: Nicholas Cowley, Isaac Ali, Bernard Arambepola
  • Patent number: 8582035
    Abstract: An embodiment of the present invention provides a method for digital television demodulation, comprising using adjacent-channel power dependent automatic gain control (AGC) for the digital television demodulation, wherein an AGC technique takes into account a total power as well as power of adjacent channels to control gain of a gain control amplifier.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: November 12, 2013
    Assignee: Intel Corporation
    Inventors: Parveen K Shukla, Bernard Arambepola, Thushara Hewavithana, Sahan S Gamage
  • Publication number: 20130272460
    Abstract: Apparatus and methods are described to perform inter carrier interference (ICI) reduction or cancellation in an orthogonal frequency domain multiplexing (OFDM) receiver. A first and a second stage of ICI cancellation may be performed before inputting an estimated transmitted data carrier for forward error correction. Forward error correction may include a signal re-correction and reconstruction of the estimated transmitted data carrier prior to a further stage of ICI cancellation.
    Type: Application
    Filed: November 18, 2011
    Publication date: October 17, 2013
    Inventors: Thushara Hewavithana, Parveen K. Shukla, Bernard Arambepola
  • Publication number: 20130272357
    Abstract: Some demonstrative embodiments include devices, systems and methods of transferring information between elements of a communication device. For example, a device may include a front-end to receive an analog downstream input including a plurality of downstream data channels, and to provide a digital serial downstream output including at least one continuous stream of constant-size downstream frames including a plurality of constant-size downstream data frames, which include downstream sample data of the plurality of downstream data channels; a serial interface including at least one serial lane to transfer the at least on stream of the digital serial downstream output; and a processor to receive the digital serial downstream over the serial interface, and to process the downstream data frames.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 17, 2013
    Inventors: Shaul Shulman, Dmitrii A. Loukianov, Naor Goldman, Bernard Arambepola
  • Patent number: 8532113
    Abstract: Embodiments of methods for receiving and processing multi-band signals in wideband and narrowband environments are described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: September 10, 2013
    Assignee: Intel Corporation
    Inventors: Bernard Arambepola, Tony Cole, Parveen Shukla, Thushara Hewavithana, Sahan Gamage
  • Patent number: 8472540
    Abstract: According to various embodiments, a method is disclosed that includes a method is disclosed that includes determining, by a receiver, a frequency offset in a signal comprising a set of orthogonal frequency division multiplexed (OFDM) symbols by determining a first difference in phase angles between a nth OFDM symbol and a nth+1 OFDM symbol on a common OFDM carrier and a first difference in phase angles between the nth+1 OFDM symbol and a nth+2 OFDM symbol on the common OFDM carrier and determining a second difference in phase angles between the first difference in phase angles between the nth OFDM symbol and the nth+1 OFDM system and the first difference in phase angles between the nth+1 OFDM symbol and the nth+2 OFDM symbol to identify the frequency offset, wherein n?{1, . . . , N}; and correcting, by the receiver, the signal using the determined frequency offset.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: June 25, 2013
    Assignee: Intel Corporation
    Inventors: Sahan S. Gamage, Bernard Arambepola, Thushara Hewavithana, Parveen K. Shukla
  • Patent number: 8457256
    Abstract: Methods and systems to compute likelihood measures of demodulated, complex-coordinate data points, to and dynamically scale the likelihood measures as a function of a channel statistic, and to decode the data points from the scaled likelihood measures. Likelihood measures may be computed relative to all points, or a subset of points of a reference constellation, such as a subset of one or more nearest constellation points. Likelihood measures may be scaled as a function of a channel frequency response variance amongst a plurality of carriers, such as carriers of an OFDM signal, and/or as a function of a channel impulse response variance.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: June 4, 2013
    Assignee: Intel Corporation
    Inventors: Sahan S. Gamage, Bernard Arambepola, Thushara Hewavithana, Parveen K. Shukla, Vinesh Bhunjun
  • Publication number: 20130107992
    Abstract: According to various embodiments, apparatus and methods disclosed herein include computing phase error of a received signal based on an estimate of a first component (e.g., in-phase component) of a transmitted signal and an analytic representation of the estimate of the first component of the transmitted signal. The analytic representation of the estimate of the first component of the transmitted signal may represent an estimate of a second component (e.g., quadrature phase component) of the transmitted signal. The analytic representation of the estimated first component may be computed using at least one of a Hilbert transform or Fourier transform on the estimated first component of the transmitted signal.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Inventors: Bernard ARAMBEPOLA, Thushara HEWAVITHANA, Sahan S. GAMAGE, Parveen K. SHUKLA
  • Publication number: 20130107996
    Abstract: According to various embodiments, apparatus and methods disclosed herein may be implemented in a digital communication (wired or wireless) receiver, and relate to minimizing noise in an estimated channel frequency response at the receiver for the purposes of channel equalization. The disclosed apparatus and methods may include determining a channel impulse response based on an estimated channel frequency response. The estimated channel frequency response, the channel impulse response, or both may include noise. An impulse response mask may be determined based on the channel impulse response, and further applied to the channel impulse response to obtain a noise-reduced channel impulse response, which may be Fourier transformed to obtain a noise-reduced channel frequency response.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 2, 2013
    Inventors: Thushara Hewavithana, Bernard Arambepola, Parveen K. Shukla, Sahan S. Gamage
  • Patent number: 8406343
    Abstract: Methods and systems to resolve cyclic ambiguity of a scattered-pilot based channel impulse response as a function of transmission parameter signalling (TPS), such as in a single frequency network, including to zero-pad a first orientation of the channel impulse response to an interval of an effective symbol duration of the multi-carrier signal, compute a channel frequency response from the zero-padded first orientation of the channel impulse response, and correlate components of the channel frequency response corresponding to frequencies of TPS carriers with raw channel frequency response data of obtained from the TPS carriers. Frequency response components of multiple zero-padded orientations of the channel impulse response may be correlated with the raw TPS carrier data to identify an optimum orientation of the channel impulse response. Frequency response components of subsequent zero-padded orientations may be iteratively computed from components of preceding orientations.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: March 26, 2013
    Assignee: Intel Corporation
    Inventors: Thushara Hewavithana, Bernard Arambepola, Parveen K. Shukla, Sahan S. Gamage, Vinesh Bhunjun