Patents by Inventor Bernard D. Casse

Bernard D. Casse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101833
    Abstract: Disclosed herein in is a radiative cooling formulation including a solvent for providing a viscosity of a radiative cooling material for application onto a surface to be passively cooled. The radiative cooling formulation includes a binder for the radiative cooling material's integrity and bonding to the surface to be passively cooled. The radiative cooling formulation includes a polymer, which, in combination with the binder, provides one or more properties in the radiative cooling material, including a reflectance of or greater than 55% in a wavelengths range of 0.3 to 2.5 microns and a first thermal emissivity peak value greater than 0.85 at a first wavelength in a range of 8 to 13 microns (?m). For example, the polymer is a latex material including a styrene based copolymer.
    Type: Application
    Filed: May 9, 2023
    Publication date: March 28, 2024
    Inventors: Sepehr TEHRANI, Quentin VAN OVERMEERE, Scott Alan ELROD, Scott E. SOLBERG, Gabriel IFTIME, Ravi NEELAKANTAN, Bernard D. CASSE
  • Patent number: 11667795
    Abstract: Disclosed herein in is a radiative cooling formulation including a first component with >55% reflectance in a wavelengths range of 0.3 to 2.5 microns, a second component with a first thermal emissivity peak value greater than 0.85 at a first wavelength in a range of 8 to 13 microns (?m), and a third component to mechanically bind together a mixture of the first component and second component.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: June 6, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Quentin Van Overmeere, Scott Alan Elrod, Scott E. Solberg, Gabriel Iftime, Ravi Neelakantan, Bernard D. Casse
  • Patent number: 11642796
    Abstract: A human-like tactile perception apparatus for providing enhanced tactile information (feedback data) from an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus's base structure is attached to the gripper's finger and includes a flat/planar support plate that presses a pressure sensor array against a target object during operable interactions. The pressure sensor array generates pressure sensor data that indicates portions of the array contacted by surface features of the target object. A sensor data processing circuit generates tactile information in response to the pressure sensor data, and then transmits the tactile information to the robotic system's control circuit. An optional mezzanine connector extends through an opening in the support plate to pass pressure sensor data to the processing circuit. An encapsulating layer covers the pressure sensor array and transmits pressure waves generated by slipping objects to enhance the tactile information.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: May 9, 2023
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse, Matthew E. Shaffer
  • Patent number: 11636200
    Abstract: The following relates generally to defense mechanisms and security systems. Broadly, systems and methods are disclosed that detect an anomaly in an Embedded Mission Specific Device (EMSD). Disclosed approaches include a meta-material antenna configured to receive a radio frequency signal from the EMSD, and a central reader configured to receive a signal from the meta-material antenna. The central reader may be configured to: build a finite state machine model of the EMSD based on the signal received from the meta-material antenna; and detect if an anomaly exists in the EMSD based on the built finite state machine model.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: April 25, 2023
    Assignee: Palo Alto Research Center Incorporated
    Inventors: George Daniel, Alexander Feldman, Bhaskar Saha, Anurag Ganguli, Bernard D. Casse, Johan de Kleer, Shantanu Rane, Ion Matei
  • Patent number: 11433555
    Abstract: A robotic gripper (end effector) for an arm-type robotic system includes a hierarchical sensor architecture that utilizes a central data processing circuit to generate rich sensory tactile data in response to pressure, temperature, vibration and/or proximity sensor data generated by finger-mounted sensor groups in response to interactions between the robotic gripper and a target object during robotic system operations. The rich sensory tactile data is used to generate feedback signals that directly control finger actuators and/or tactile information that is supplied to the robotic system's control circuit. Sensor data processing circuits are configured to receive single-sensor data signals in parallel from the sensor groups, and to transmit corresponding finger-level sensor data signal on a serial bus/signal line to the central data processing circuit.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 6, 2022
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Clinton J. Smith, Christopher A. Paulson, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Patent number: 11426599
    Abstract: A neuromodulator includes one or more coil sets. Each of the coil sets has three coils aligned to produce magnetic and electric fields in three different directions. A plurality of conductors couple the coils of the one or more coil sets to one or more input signals such that each of the coils is independently activated via an individually selectable current applied through the conductors. The individual activation creates a resultant field that is a combination of the magnetic and electric fields in three different directions for each of the coil sets.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 30, 2022
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Krishnan Thyagarajan, Bernard D. Casse, Christopher Paulson, George Daniel, Armin R. Volkel
  • Patent number: 11413760
    Abstract: A flex-rigid sensor apparatus for providing sensor data from sensors disposed on an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus includes piezo-type pressure sensors sandwiched between lower and upper PCB stack-up structures respectively fabricated using rigid PCB (e.g., FR-4) and flexible PCB (e.g., polyimide) manufacturing processes. Additional (e.g., temperature and proximity) sensors are mounted on the upper/flexible stack-up structure. A spacer structure is disposed between the two stack-up structures and includes an insulating material layer defining openings that accommodate the pressure sensors. Copper film layers are configured to provide Faraday cages around each pressure sensor. The pressure sensors, additional sensors and Faraday cages are connected to sensor data processing and control circuitry (e.g., analog-to-digital converter circuits) by way of signal traces formed in the lower and upper stack-up structures and in the spacer structure.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 16, 2022
    Assignee: RIOA Intelligent Machines, Inc.
    Inventors: Christopher A. Paulson, Clinton J. Smith, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Patent number: 11383390
    Abstract: A robotic network includes multiple work cells that communicate with a cloud server using a network bus (e.g., the Internet). Each work cell includes an interface computer and a robotic system including a robot mechanism and a control circuit. Each robot mechanism includes an end effector/gripper having integral multimodal sensor arrays that measure physical parameter values (sensor data) during interactions between the end effector/gripper and target objects. The cloud server collects and correlates sensor data from all of the work cells to facilitate efficient diagnosis of problematic robotic operations (e.g., accidents/failures), and then automatically updates each work cell with improved operating system versions or AI models (e.g., including indicator parameter value sets and associated secondary robot control signals that may be used by each robot system to detect potential imminent robot accidents/failures during subsequent robot operations.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: July 12, 2022
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Matthew E. Shaffer, Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse
  • Patent number: 11273555
    Abstract: A multimodal sensing architecture utilizes an array of single sensor or multi-sensor groups (superpixels) to facilitate advanced object-manipulation and recognition tasks performed by mechanical end effectors in robotic systems. The single-sensors/superpixels are spatially arrayed over contact surfaces of the end effector fingers and include, e.g., pressure sensors and vibration sensors that facilitate the simultaneous detection of both static and dynamic events occurring on the end effector, and optionally include proximity sensors and/or temperature sensors. A readout circuit receives the sensor data from the superpixels and transmits the sensor data onto a shared sensor data bus.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: March 15, 2022
    Assignee: RIOS Intelligent Machines, Inc.
    Inventors: Bernard D. Casse, Clinton J. Smith, Christopher Lalau Keraly, Matthew E. Shaffer, Christopher A. Paulson
  • Publication number: 20210370087
    Abstract: An implantable magnetic neurostimulation probe includes at least one electrical conductor disposed on a substrate and arranged in at least one planar loop. At least one planar magnetic core comprising a magnetic material is disposed on the substrate and within the planar loop. A biocompatible coating is disposed over the substrate, electrically conductive trace, and magnetic core.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Krishnan Thyagarajan, George Daniel, Bernard D. Casse
  • Publication number: 20210363356
    Abstract: Disclosed herein in is a radiative cooling formulation including a first component with >55% reflectance in a wavelengths range of 0.3 to 2.5 microns, a second component with a first thermal emissivity peak value greater than 0.85 at a first wavelength in a range of 8 to 13 microns (?m), and a third component to mechanically bind together a mixture of the first component and second component.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 25, 2021
    Inventors: Quentin Van Overmeere, Scott Alan Elrod, Scott E. Solberg, Gabriel Iftime, Ravi Neelakantan, Bernard D. Casse
  • Patent number: 11110289
    Abstract: An implantable magnetic neurostimulation probe includes at least one electrical conductor disposed on a substrate and arranged in at least one planar loop. At least one planar magnetic core comprising a magnetic material is disposed on the substrate and within the planar loop. A biocompatible coating is disposed over the substrate, electrically conductive trace, and magnetic core.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: September 7, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Krishnan Thyagarajan, George Daniel, Bernard D. Casse
  • Patent number: 11084943
    Abstract: Disclosed herein in is a radiative cooling formulation comprising a first component with >55% reflectance in wavelengths between 0.3 to 2.5 microns, a second component with >0.85 peak thermal emissivity in a window of 4 to 35 microns, and a third component to mechanically bind together the mixture of components.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: August 10, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Quentin Van Overmeere, Scott Alan Elrod, Scott E. Solberg, Gabriel Iftime, Ravi Neelakantan, Bernard D. Casse
  • Patent number: 11084944
    Abstract: Disclosed herein in is a radiative cooling formulation comprising a first component with >55% reflectance in a wavelengths range of 0.3 to 2.5 microns, a second component with >0.85 peak thermal emissivity in a window range of 4 to 35 microns, and a third component to mechanically bind together a mixture of the first and second components.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 10, 2021
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Quentin Van Overmeere, Scott Alan Elrod, Scott E. Solberg, Gabriel Iftime, Ravi Neelakantan, Bernard D. Casse
  • Publication number: 20210154488
    Abstract: A neuromodulator includes one or more coil sets. Each of the coil sets has three coils aligned to produce magnetic and electric fields in three different directions. A plurality of conductors couple the coils of the one or more coil sets to one or more input signals such that each of the coils is independently activated via an individually selectable current applied through the conductors. The individual activation creates a resultant field that is a combination of the magnetic and electric fields in three different directions for each of the coil sets.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Inventors: Krishnan Thyagarajan, Bernard D. Casse, Christopher Paulson, George Daniel, Armin R. Volkel
  • Publication number: 20200306979
    Abstract: A flex-rigid sensor apparatus for providing sensor data from sensors disposed on an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus includes piezo-type pressure sensors sandwiched between lower and upper PCB stack-up structures respectively fabricated using rigid PCB (e.g., FR-4) and flexible PCB (e.g., polyimide) manufacturing processes. Additional (e.g., temperature and proximity) sensors are mounted on the upper/flexible stack-up structure. A spacer structure is disposed between the two stack-up structures and includes an insulating material layer defining openings that accommodate the pressure sensors. Copper film layers are configured to provide Faraday cages around each pressure sensor. The pressure sensors, additional sensors and Faraday cages are connected to sensor data processing and control circuitry (e.g., analog-to-digital converter circuits) by way of signal traces formed in the lower and upper stack-up structures and in the spacer structure.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Christopher A. Paulson, Clinton J. Smith, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Publication number: 20200306988
    Abstract: A robotic network includes multiple work cells that communicate with a cloud server using a network bus (e.g., the Internet). Each work cell includes an interface computer and a robotic system including a robot mechanism and a control circuit. Each robot mechanism includes an end effector/gripper having integral multimodal sensor arrays that measure physical parameter values (sensor data) during interactions between the end effector/gripper and target objects. The cloud server collects and correlates sensor data from all of the work cells to facilitate efficient diagnosis of problematic robotic operations (e.g., accidents/failures), and then automatically updates each work cell with improved operating system versions or AI models (e.g., including indicator parameter value sets and associated secondary robot control signals that may be used by each robot system to detect potential imminent robot accidents/failures during subsequent robot operations.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Matthew E. Shaffer, Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse
  • Publication number: 20200306986
    Abstract: A human-like tactile perception apparatus for providing enhanced tactile information (feedback data) from an end-effector/gripper to the control circuit of an arm-type robotic system. The apparatus's base structure is attached to the gripper's finger and includes a flat/planar support plate that presses a pressure sensor array against a target object during operable interactions. The pressure sensor array generates pressure sensor data that indicates portions of the array contacted by surface features of the target object. A sensor data processing circuit generates tactile information in response to the pressure sensor data, and then transmits the tactile information to the robotic system's control circuit. An optional mezzanine connector extends through an opening in the support plate to pass pressure sensor data to the processing circuit. An encapsulating layer covers the pressure sensor array and transmits pressure waves generated by slipping objects to enhance the tactile information.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Christopher Lalau Keraly, Clinton J. Smith, Christopher A. Paulson, Bernard D. Casse, Matthew E. Shaffer
  • Publication number: 20200306993
    Abstract: A robotic gripper (end effector) for an arm-type robotic system includes a hierarchical sensor architecture that utilizes a central data processing circuit to generate rich sensory tactile data in response to pressure, temperature, vibration and/or proximity sensor data generated by finger-mounted sensor groups in response to interactions between the robotic gripper and a target object during robotic system operations. The rich sensory tactile data is used to generate feedback signals that directly control finger actuators and/or tactile information that is supplied to the robotic system's control circuit. Sensor data processing circuits are configured to receive single-sensor data signals in parallel from the sensor groups, and to transmit corresponding finger-level sensor data signal on a serial bus/signal line to the central data processing circuit.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Applicant: Robotik Innovations, Inc.
    Inventors: Clinton J. Smith, Christopher A. Paulson, Christopher Lalau Keraly, Matthew E. Shaffer, Bernard D. Casse
  • Publication number: 20200301005
    Abstract: An apparatus including an antenna and a processing device. The antenna includes a steerable array. The steerable array may transmit a signal at an angle of transmission toward a portion of an object. The steerable array may receive a reflection of the signal off of the portion of the object. The processing device may be coupled to the antenna. The processing device may determine a digital representation of the portion of the object in view of the reflection of the signal.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 24, 2020
    Inventors: George Daniel, Bernard D. Casse, Eric Cocker