Patents by Inventor Bernd J. Neudecker

Bernd J. Neudecker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140295246
    Abstract: The present invention relates to flexible thin film batteries on semiconducting surface or the conductive or insulating packaging surface of a semiconductor device and methods of constructing such batteries. Electrochemical devices may be glued to a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device or deposited directly thereon. The invention also relates to flexible thin film batteries on flexible printed circuit board where the electrochemical devices may also be glued or deposited on the flexible printed circuit board.
    Type: Application
    Filed: February 26, 2014
    Publication date: October 2, 2014
    Applicant: Infinite Power Solutions, Inc.
    Inventors: Raymond R. Johnson, Shawn W. Snyder, Paul C. Brantner, Timothy J. Bradow, Bernd J. Neudecker
  • Publication number: 20140154553
    Abstract: A power source for a solid state device includes: a first frame having a first contact portion, a first bonding portion and a first extension portion between the first contact portion and the first bonding portion; a second frame having a second contact portion, a second bonding portion and a second extension portion between the second contact portion and the second bonding portion; and a first pole layer, an electrolyte layer and a second pole layer positioned between the first and second contact portions, wherein a first portion of the electrolyte layer is positioned between the first extension and the first pole and a second portion of the electrolyte layer is positioned between the first extension and the second pole.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicants: Infinite Power Solutions, Inc., Medtronic, Inc.
    Inventors: John K. Day, Michael W. Barror, Shawn W. Snyder, Alexandra Z. LaGuardia, Damon E. Lytle, Bernd J. Neudecker
  • Publication number: 20140076622
    Abstract: The present invention relates to, for example, printed circuit boards having a thin film battery or other electrochemical cell between or within its layer or layers. The present invention also relates to, for example, electrochemical cells within a layer stack of a printed circuit board.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Applicant: Infinite Power Solutions, Inc.
    Inventors: Bernd J. Neudecker, Joseph A. Keating
  • Publication number: 20140030584
    Abstract: An electrochemical device includes an environmentally sensitive layer and a thin encapsulation layer deposited over said sensitive layer in which the thin encapsulation is a ceramic-metal composite laminate.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: Infinite Power Solutions, Inc.
    Inventors: Raymond R. Johnson, Shawn W. Snyder, Paul C. Brantner, Timothy J. Bradow, Bernd J. Neudecker
  • Patent number: 8599572
    Abstract: The present invention relates to, for example, printed circuit boards having a thin film battery or other electrochemical cell between or within its layer or layers. The present invention also relates to, for example, electrochemical cells within a layer stack of a printed circuit board.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: December 3, 2013
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Bernd J. Neudecker, Joseph A. Keating
  • Publication number: 20130309556
    Abstract: An electrochemical device is claimed and disclosed, including a method of manufacturing the same, comprising an environmentally sensitive material, such as, for example, a lithium anode; and a plurality of alternating thin metallic and ceramic, blocking sub-layers. The multiple metallic and ceramic, blocking sub-layers encapsulate the environmentally sensitive material. The device may include a stress modulating layer, such as for example, a Lipon layer between the environmentally sensitive material and the encapsulation layer.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 21, 2013
    Applicant: INFINITE POWER SOLUTIONS, INC.
    Inventors: Bernd J. Neudecker, Shawn W. Snyder
  • Patent number: 8535396
    Abstract: The present invention relates to apparatus, compositions and methods of fabricating high performance thin-film batteries on metallic substrates, polymeric substrates, or doped or undoped silicon substrates by fabricating an appropriate barrier layer composed, for example, of barrier sublayers between the substrate and the battery part of the present invention thereby separating these two parts chemically during the entire battery fabrication process as well as during any operation and storage of the electrochemical apparatus during its entire lifetime. In a preferred embodiment of the present invention thin-film batteries fabricated onto a thin, flexible stainless steel foil substrate using an appropriate barrier layer that is composed of barrier sublayers have uncompromised electrochemical performance compared to thin-film batteries fabricated onto ceramic substrates when using a 700° C. post-deposition anneal process for a LiCoO2 positive cathode.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: September 17, 2013
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Shawn W. Snyder, Bernd J. Neudecker
  • Patent number: 8518581
    Abstract: An electrochemical device is claimed and disclosed, including a method of manufacturing the same, comprising an environmentally sensitive material, such as, for example, a lithium anode; and a plurality of alternating thin metallic and ceramic, blocking sub-layers. The multiple metallic and ceramic, blocking sub-layers encapsulate the environmentally sensitive material. The device may include a stress modulating layer, such as for example, a Lipon layer between the environmentally sensitive material and the encapsulation layer.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: August 27, 2013
    Assignee: Inifinite Power Solutions, Inc.
    Inventors: Bernd J. Neudecker, Shawn W. Snyder
  • Patent number: 8455137
    Abstract: An apparatus for use as a fracture absorption layer, and an apparatus for use as an electrochemical device are taught. The apparatuses of the present invention may be of particular use in the manufacture of thin-film, lightweight, flexible or conformable, electrochemical devices such as batteries, and arrays of such devices. The present invention may provide many advantages including stunting fractures in a first electrochemical layer from propagating in a second electrochemical layer.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: June 4, 2013
    Assignee: ITN Energy Systems, Inc.
    Inventors: Martin H. Benson, Bernd J. Neudecker
  • Patent number: 8445130
    Abstract: An electrochemical device is claimed and disclosed wherein certain embodiments have a cathode greater than about 4 ?m and less than about 200 ?m thick; a thin electrolyte less than about 10 ?m thick; and an anode less than about 30 ?m thick. Another claimed and disclosed electrochemical device includes a cathode greater than about 0.5 ?m and less than about 200 ?m thick; a thin electrolyte less than about 10 ?m thick; and an anode less than about 30 ?m thick, wherein the cathode is fabricated by a non-vapor phase deposition method. The electrochemical device may also include a substrate, a current collector, an anode current collector, encapsulation and a moderating layer.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: May 21, 2013
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Bernd J. Neudecker, Shawn W. Snyder
  • Patent number: 8431264
    Abstract: An electrochemical device is claimed and disclosed wherein certain embodiments have a cathode greater than about 4 ?m and less than about 200 ?m thick; a thin electrolyte less than about 10 ?m thick; and an anode less than about 30 ?m thick. Another claimed and disclosed electrochemical device includes a cathode greater than about 0.5 ?m and less than about 200 ?m thick; a thin electrolyte less than about 10 ?m thick; and an anode less than about 30 ?m thick, wherein the cathode is fabricated by a non-vapor phase deposition method. A non-vacuum deposited cathode may be rechargeable or non-rechargeable. The cathode may be made of CFx (carbon fluoride) material, wherein, for example, 0<x<4. The electrochemical device may also include a substrate, a current collector, an anode current collector, encapsulation and a moderating layer.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: April 30, 2013
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Bernd J. Neudecker, Shawn W. Snyder
  • Patent number: 8404376
    Abstract: The present invention relates to metal foil encapsulation of an electrochemical device. The metal foil encapsulation may also provide contact tabs for the electrochemical device. The present invention may also include a selectively conductive bonding layer between a contact and a cell structure.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: March 26, 2013
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Shawn W. Snyder, Bernd J. Neudecker, Paul C. Brantner
  • Patent number: 8394522
    Abstract: The present invention relates to metal film encapsulation of an electrochemical device. The metal film encapsulation may provide contact tabs for the electrochemical device. The present invention may also include a selectively conductive bonding layer between a contact and a cell structure. The present invention may further include ways of providing heat and pressure resilience to the bonding layer and improving the robustness of the protection for the cell structure.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: March 12, 2013
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Shawn W. Snyder, Paul C. Brantner, Joseph A. Keating, Timothy N. Bradow, Prativadi B. Narayan, Bernd J. Neudecker
  • Patent number: 8350519
    Abstract: Described herein is, for example, a battery or capacitor over voltage (overcharge) and under-voltage protection circuit, that, for example, is adapted to not draw current from the battery or capacitor to be charged unless charge energy is detected and to not charge an energy storage device when an over-charge condition is sensed. The protection circuit may, for example, not be turned on unless an over voltage condition is present. Incoming energy to the system can be shunted to ground via a shunt load of various types including resistive loads and active components such as a zener diode. In some embodiments, no switching of the inbound power is required. Within limits, no regulation of inbound power is needed. When inbound power is sufficient to charge the battery or capacitor, regulation can occur via the applied shunt regulator if overcharge voltage conditions exist. Either type of charge source, voltage or current, can be used to provide charge energy.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: January 8, 2013
    Assignee: Infinite Power Solutions, Inc
    Inventors: Paul C. Brantner, Joseph A. Keating, Raymond R. Johnson, Timothy N. Bradow, Prativadi B. Narayan, Bernd J. Neudecker
  • Patent number: 8268488
    Abstract: The invention relates to a solid-state lithium-ion thin-film electrolyte that, compared to the current state-of-the-art thin-film electrolyte, Lipon, exhibits an equal or larger electrochemical stability window (0-5.5 V vs. Li+/Li), an equal or smaller electronic conductivity (10?14 S/cm at 25° C.), the same ideal transference number for Li+ ions (t=1.000), and a 10× higher Li+ ion conductivity at ?40° C. Latter provides thin-film batteries (TFBs) with at least a 5× higher power performance at ?40° C. over the current state-of-the-art Lipon TFBs.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: September 18, 2012
    Assignee: Infinite Power Solutions, Inc.
    Inventor: Bernd J. Neudecker
  • Patent number: 8236443
    Abstract: The present invention relates to metal foil encapsulation of an electrochemical device. The metal foil encapsulation may also provide contact tabs for the electrochemical device. The present invention may also include a selectively conductive bonding layer between a contact and a cell structure.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 7, 2012
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Shawn W. Snyder, Bernd J. Neudecker, Paul C. Brantner
  • Patent number: 8197781
    Abstract: A method of forming a lithium orthophosphate sputter target or tile and resulting target material is presented. The target is fabricated from a pure lithium orthophosphate powder refined to a fine powder grain size. After steps of consolidation into a ceramic body, packaging and degassing, the ceramic body is densified to high density, and transformed into a stable single phase of pure lithium orthophosphate under sealed atmosphere. The lithium orthophosphate target is comprised of a single phase, and can preferably have a phase purity greater than 95% and a density of greater than 95%.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: June 12, 2012
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Bernd J. Neudecker, Vassiliki Milonopoulou
  • Publication number: 20110300432
    Abstract: Rechargeable, high-density electrochemical devices are disclosed. These electrochemical devices may, for example, include high energy densities that store more energy in a given, limited volume than other batteries and still show acceptable power or current rate capability without any liquid or gel-type battery components. Certain embodiments may involve, for example, low volume or mass of all of the battery components other than the cathode, while simultaneously achieving high electrochemically active mass inside the positive cathode.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 8, 2011
    Inventors: Shawn W. SNYDER, Bernd J. Neudecker
  • Patent number: 8021778
    Abstract: The present invention relates to apparatus, compositions and methods of fabricating high performance thin-film batteries on metallic substrates, polymeric substrates, or doped or undoped silicon substrates by fabricating an appropriate barrier layer composed, for example, of barrier sublayers between the substrate and the battery part of the present invention thereby separating these two parts chemically during the entire battery fabrication process as well as during any operation and storage of the electrochemical apparatus during its entire lifetime. In a preferred embodiment of the present invention thin-film batteries fabricated onto a thin, flexible stainless steel foil substrate using an appropriate barrier layer that is composed of barrier sublayers have uncompromised electrochemical performance compared to thin-film batteries fabricated onto ceramic substrates when using a 700° C. post-deposition anneal process for a LiCoO2 positive cathode.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: September 20, 2011
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Shawn W. Snyder, Bernd J. Neudecker
  • Patent number: 7993773
    Abstract: The present invention relates to apparatus, compositions and methods of fabricating high performance thin-film batteries on metallic substrates, polymeric substrates, or doped or undoped silicon substrates by fabricating an appropriate barrier layer composed, for example, of barrier sublayers between the substrate and the battery part of the present invention thereby separating these two parts chemically during the entire battery fabrication process as well as during any operation and storage of the electrochemical apparatus during its entire lifetime. In a preferred embodiment of the present invention thin-film batteries fabricated onto a thin, flexible stainless steel foil substrate using an appropriate barrier layer that is composed of barrier sublayers have uncompromised electrochemical performance compared to thin-film batteries fabricated onto ceramic substrates when using a 700° C. post-deposition anneal process for a LiCoO2 positive cathode.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: August 9, 2011
    Assignee: Infinite Power Solutions, Inc.
    Inventors: Shawn W. Snyder, Bernd J. Neudecker