Patents by Inventor Beth Savidge

Beth Savidge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11930752
    Abstract: Provided are methods for increasing the yield of a monocot plant through treatment of the plant with a plant growth regulator. In certain embodiments, maize plants produce multiple ears and an increased number of kernels. In certain embodiments, reduced height of the plant allows for more efficient self-pollination.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: March 19, 2024
    Assignee: MONSANTO TECHNOLOGY LLC
    Inventors: Daniel Ovadya, Beth Savidge, Kyle Smith, Dale Val
  • Patent number: 11917959
    Abstract: Provided are methods for increasing the yield of a monocot plant through treatment of the plant with a plant growth regulator. In certain embodiments, maize plants produce multiple ears and an increased number of kernels. In certain embodiments, reduced height of the plant allows for more efficient self-pollination.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: March 5, 2024
    Assignee: MONSANTO TECHNOLOGY LLC
    Inventors: Daniel Ovadya, Beth Savidge, Kyle Smith, Dale Val
  • Publication number: 20230159946
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.
    Type: Application
    Filed: November 28, 2022
    Publication date: May 25, 2023
    Applicant: Monsanto Technology LLC
    Inventors: Brent BROWER-TOLAND, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya Howell, Brad Mcdill, Dan Ovadya, Beth Savidge, Vijay Sharma
  • Patent number: 11555201
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: January 17, 2023
    Assignee: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya Howell, Brad McDill, Dan Ovadya, Beth Savidge, Vijay Sharma
  • Patent number: 11479783
    Abstract: This invention provides recombinant DNA constructs, transgenic plant nuclei and cells with such recombinant DNA construct for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: October 25, 2022
    Assignee: Monsanto Technology LLC
    Inventors: Mark Scott Abad, Jeffrey E. Ahrens, Alice Clara Augustine, Erin Bell, Robert J. Bensen, Paolo Castiglioni, Richard Eric Cerny, Shobha Char, Xianfeng Chen, Jaishree M. Chittoor-Vijayanath, Maureen Daley, Jill Deikman, Molian Deng, Todd DeZwaan, Stephen Duff, Michael D. Edgerton, Bradon J. Fabbri, Jason Fenner, Karen Gabbert, Barry S. Goldman, Deborah J. Hawkins, Steve He, Richard Johnson, Balasulojini Karunanandaa, Garrett J. Lee, Paul Loida, Savitha Madappa, Robert J. Meister, Donald E. Nelson, Anand Pandravada, Obed Patty, Ming Peng, Marie Petracek, Rajani Monnanda Somaiah, Dhanalakshmi Ramachandra, Monica P. Ravanello, Thomas G. Ruff, Rick A. Sanders, Beth Savidge, Steven H. Schwartz, Padmini Sudarshana, Jindong Sun, Rebecca L. Thompson-Mize, Virginia Ursin, Dale L. Vai, Srikanth Venkatachalayya, Tymagondlu V. Venkatesh, Kammaradi Vidya, K. Vijayalakshmi, Todd C. Weber, Jingrui Wu, Zhidong Xie, Wei Zheng
  • Publication number: 20220090105
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Patent number: 11225671
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: January 18, 2022
    Assignee: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20210315175
    Abstract: The present disclosure relates to methods of producing viable Cannabis sativa seeds by inducing male flowers on a genetically female Cannabis sativa plant. The pollen produced by the induced flowers of such plant can be used to pollinate female flowers from the same plant or another female plant to produce seed. In certain embodiments, feminised Cannabis sativa seed is produced on a production scale.
    Type: Application
    Filed: October 21, 2020
    Publication date: October 14, 2021
    Inventors: Daniel OVADYA, Beth SAVIDGE
  • Publication number: 20200375129
    Abstract: Provided are methods for increasing the yield of a monocot plant through treatment of the plant with a plant growth regulator. In certain embodiments, maize plants produce multiple ears and an increased number of kernels. In certain embodiments, reduced height of the plant allows for more efficient self-pollination.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Daniel Ovadya, Beth Savidge, Kyle Smith, Dale Val
  • Publication number: 20200375128
    Abstract: Provided are methods for increasing the yield of a monocot plant through treatment of the plant with a plant growth regulator. In certain embodiments, maize plants produce multiple ears and an increased number of kernels. In certain embodiments, reduced height of the plant allows for more efficient self-pollination.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Daniel Ovadya, Beth Savidge, Kyle Smith, Dale Val
  • Patent number: 10772274
    Abstract: Provided are methods for increasing the yield of a monocot plant through treatment of the plant with a plant growth regulator. In certain embodiments, maize plants produce multiple ears and an increased number of kernels. In certain embodiments, reduced height of the plant allows for more efficient self-pollination.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 15, 2020
    Assignee: Monsanto Technology LLC
    Inventors: Daniel Ovadya, Beth Savidge, Kyle Smith, Dale Val
  • Publication number: 20200208167
    Abstract: This invention provides recombinant DNA constructs, transgenic plant nuclei and cells with such recombinant DNA construct for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 2, 2020
    Inventors: Mark Scott Abad, Jeffrey E. Ahrens, Alice Clara Augustine, Erin Bell, Robert J. Bensen, Paolo Castiglioni, Richard Eric Cerny, Shobha Char, Xianfeng Chen, Jaishree M. Chittoor-Vijayanath, Maureen Daley, Jilll Deikman, Molian Deng, Todd DeZwaan, Stephen Duff, Michael D. Edgerton, Bradon J. Fabbri, Jason Fenner, Karen Gabbert, Barry S. Goldman, Deborah J. Hawkins, Steve He, Richard Johnson, Balasulojini Karunanandaa, Garrett J. Lee, Paul Loida, Savitha Madappa, Robert J. Meister, Donald E. Nelson, Anand Pandravada, Obed Patty, Ming Peng, Marie Petracek, Rajani Monnanda Somaiah, Dhanalakshmi Ramachandra, Monica P. Ravanello, Thomas G. Ruff, Rick A Sanders, Beth Savidge, Steven H. Schwartz, Padmini Sudarshana, Jindong Sun, Rebecca L. Thompson-Mize, Virginia Ursin, Dale L. Val, Srikanth Venkatachalayya, Tymagondlu V. Venkatesh, Kammaradi Vidya, K. Vijayalakshmi, Todd C. Weber, Jingrui Wu, Zhidong Xie, Wei Zheng
  • Publication number: 20190300890
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 3, 2019
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20190218563
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 18, 2019
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Patent number: 10294486
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: May 21, 2019
    Assignee: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma
  • Publication number: 20190014731
    Abstract: Provided are methods for increasing the yield of a monocot plant through treatment of the plant with a plant growth regulator. In certain embodiments, maize plants produce multiple ears and an increased number of kernels. In certain embodiments, reduced height of the plant allows for more efficient self-pollination.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 17, 2019
    Inventors: Daniel Ovadya, Beth Savidge, Kyle Smith, Dale Val
  • Publication number: 20180258442
    Abstract: This invention provides transgenic plant cells with recombinant DNA for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
    Type: Application
    Filed: February 20, 2018
    Publication date: September 13, 2018
    Inventors: Mark Scott Abad, Thomas R. Adams, Julie A. Alvarez, Mahindra Anuradha, Alice Clara Augustine, Erin Bell, Kristen A. Bennett, Robert J. Bensen, Paolo Castiglioni, Richard Eric Cerny, Xianfeng Chen, Jaishree M. Chittoor-Vijayanath, Farah Deeba, Jill Dcikman, Molian Deng, Stephen Duff, Bradon J. Fabbri, Jason Fenner, Mary Fernandes, Karen Gabbert, Barry S. Goldman, Deborah J. Hawkins, Jacqueline E. Heard, Balasulojini Karunanandaa, Dangyang Ke, John R. Ledeaux, Garrett J. Lee, Savitha Madappa, Donald E. Nelson, Obed Patty, Badami S. Pratesh, Qungang Qi, Ramachandra Dhanalakshmi, G. Ramamohan, Thomas G. Ruff, Rick A. Sanders, Sangeetha Singh, Thomas J. Savage, Beth Savidge, Char Shobha, Rajani Monnanda Somaiah, Padmini Sudarshana, Sreekanta Suma, Jindong Sun, Rebecca L. Thompson-Mize, Dale L. Val, Srikanth Venkatachalayya, Tymagondlu V. Venkatesh, Kammaradi Vidya, Jingrui Wu, Zhidong Xie, Nanfei Xu, Wei Zheng, Rajani Monnanda Somaiah, Meghan Galligan Donnarummo
  • Publication number: 20180245095
    Abstract: This invention provides recombinant DNA constructs, transgenic plant nuclei and cells with such recombinant DNA construct for expression of proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants. This invention also provides transgenic plants and progeny seed comprising the transgenic plant cells where the plants are selected for having an enhanced trait selected from the group of traits consisting of enhanced water use efficiency, enhanced cold tolerance, increased yield, enhanced nitrogen use efficiency, enhanced seed protein and enhanced seed oil. Also disclosed are methods for manufacturing transgenic seed and plants with enhanced traits.
    Type: Application
    Filed: December 5, 2017
    Publication date: August 30, 2018
    Inventors: Mark Scott Abad, Jeffrey E. Ahrens, Alice Clara Augustine, Erin Bell, Robert J. Bensen, Srikanth Venkatachalayya, Paolo Castiglioni, Richard Eric Cerny, Jaishree M. Chittoor-Vijayanath, Maureen Daley, Jill Deikman, Molian Deng, Todd DeZwaan, Stephen Duff, Michael D. Edgerton, Bradon J. Fabbri, Jason Fenner, Karen Gabbert, Garrett J. Lee, Barry S. Goldman, Deborah J. Hawkins, Steve He, Xianfeng Chen, Balasulojini Karunanandaa, Paul Loida, Savitha Madappa, Robert J. Meister, Ming Peng, Donald E. Nelson, Anand Pandravada, Obed Patty, Marie Petracek, Rajani Monnanda Somaiah, Monica P. Ravanello, Richard Johnson, Thomas G. Ruff, Rick A. Sanders, Beth Savidge, Steven H. Schwarts, Shobha Char, Padmini Sudarshana, Jindong Sun, Rebecca L. Thompson-Mize, Virginia Ursin, Dale L. Val, Tymagondlu V. Venkatesh, Kammaradi Vidya, K. Vijayalakshmi, Todd C. Weber, Jingrui Wu, Wei Zheng, Zhidong Xie, Dhanalaksmi Ramachandra
  • Publication number: 20180105819
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules useful for attenuating and/or refining the expression of a florigenic FT gene or transgene using targeting sequences of small RNA molecules. Transgenic plants, plant cells and tissues, and plant parts comprising the recombinant constructs, vectors, and molecules are also provided. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant via suppression, relative to a control or wild type plant. Methods are further provided for introducing the recombinant DNA constructs, vectors, and molecules into a plant, and planting transgenic plants in the field including at higher densities. Transgenic plants of the present invention may provide greater yield potential than wild type or control plants.
    Type: Application
    Filed: October 18, 2017
    Publication date: April 19, 2018
    Inventors: Brent BROWER-TOLAND, Shunhong DAI, Karen GABBERT, Alexander GOLDSHMIDT, Miya HOWELL, Brad MCDILL, Dan OVADYA, Beth SAVIDGE, Vijay SHARMA
  • Publication number: 20160304891
    Abstract: The present invention provides recombinant DNA constructs, vectors and molecules comprising a polynucleotide sequence encoding a florigenic FT protein operably linked to a vegetative stage promoter, which may also be a meristem-preferred or meristem-specific promoter. Transgenic plants, plant cells and tissues, and plant parts are further provided comprising a polynucleotide sequence encoding a florigenic FT protein. Transgenic plants comprising a florigenic FT transgene may produce more bolls, siliques, fruits, nuts, or pods per node on the transgenic plant, particularly on the main stem of the plant, relative to a control or wild type plant. Methods are further provided for introducing a florigenic FT transgene into a plant, and planting transgenic FT plants in the field including at higher densities. Transgenic plants of the present invention may thus provide greater yield potential than wild type plants and may be planted at a higher density due to their altered plant architecture.
    Type: Application
    Filed: April 18, 2016
    Publication date: October 20, 2016
    Applicant: Monsanto Technology LLC
    Inventors: Brent Brower-Toland, Rico A. Caldo, Shunhong Dai, Karen Gabbert, Alexander Goldshmidt, Miya D. Howell, Balasulojini Karunanandaa, Sivalinganna Manjunath, Bradley W. McDill, Daniel J. Ovadya, Sasha Preuss, Elena A. Rice, Beth Savidge, Vijay K. Sharma