Patents by Inventor Bhadri N. Varadarajan

Bhadri N. Varadarajan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240145234
    Abstract: Disclosed are methods and systems for providing silicon carbide films. A layer of silicon carbide can be provided under process conditions that employ one or more silicon-containing precursors that have one or more silicon-hydrogen bonds and/or silicon-silicon bonds. The silicon-containing precursors may also have one or more silicon-oxygen bonds and/or silicon-carbon bonds. One or more radical species in a substantially low energy state can react with the silicon-containing precursors to form the silicon carbide film. The one or more radical species can be formed in a remote plasma source.
    Type: Application
    Filed: December 14, 2023
    Publication date: May 2, 2024
    Inventors: Bhadri N. VARADARAJAN, Bo GONG, Zhe GUI
  • Patent number: 11920239
    Abstract: Certain embodiments herein relate to an apparatus used for remote plasma processing. In various embodiments, the apparatus includes a reaction chamber that is conditioned by forming a low recombination material coating on interior chamber surfaces. The low recombination material helps minimize the degree of radical recombination that occurs when the reaction chamber is used to process substrates. During processing on substrates, the low recombination material may become covered by relatively higher recombination material (e.g., as a byproduct of the substrate processing), which results in a decrease in the amount of radicals available to process the substrate over time. The low recombination material coating may be reconditioned through exposure to an oxidizing plasma, which acts to reform the low recombination material coating. The reconditioning process may occur periodically as additional processing occurs on substrates.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: March 5, 2024
    Assignee: Lam Research Corporation
    Inventors: Bhadri N. Varadarajan, Bo Gong, Rachel E. Batzer, Huatan Qiu, Bart J. Van Schravendijk, Geoffrey Hohn
  • Publication number: 20240063015
    Abstract: A doped or undoped silicon carbide (SiCxOyNz) film can be deposited in one or more features of a substrate for gapfill. After a first thickness of the doped or undoped silicon carbide film is deposited in the one or more features, the doped or undoped silicon carbide film is exposed to a remote hydrogen plasma under conditions that cause a size of an opening near a top surface of each of the one or more features to increase, where the conditions can be controlled by controlling treatment time, treatment frequency, treatment power, and/or remote plasma gas composition. Operations of depositing additional thicknesses of silicon carbide film and performing a remote hydrogen plasma treatment are repeated to at least substantially fill the one or more features. Various time intervals between deposition and plasma treatment may be added to modulate gapfill performance.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: Guangbi YUAN, Ieva NARKEVICIUTE, Bo GONG, Bhadri N. VARADARAJAN
  • Patent number: 11894227
    Abstract: Disclosed are methods and systems for providing silicon carbide films. A layer of silicon carbide can be provided under process conditions that employ one or more silicon-containing precursors that have one or more silicon-hydrogen bonds and/or silicon-silicon bonds. The silicon-containing precursors may also have one or more silicon-oxygen bonds and/or silicon-carbon bonds. One or more radical species in a substantially low energy state can react with the silicon-containing precursors to form the silicon carbide film. The one or more radical species can be formed in a remote plasma source.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: February 6, 2024
    Assignee: Novellus Systems, Inc.
    Inventors: Bhadri N. Varadarajan, Bo Gong, Zhe Gui
  • Patent number: 11848199
    Abstract: A doped or undoped silicon carbide (SiCxOyNz) film can be deposited in one or more features of a substrate for gapfill. After a first thickness of the doped or undoped silicon carbide film is deposited in the one or more features, the doped or undoped silicon carbide film is exposed to a remote hydrogen plasma under conditions that cause a size of an opening near a top surface of each of the one or more features to increase, where the conditions can be controlled by controlling treatment time, treatment frequency, treatment power, and/or remote plasma gas composition. Operations of depositing additional thicknesses of silicon carbide film and performing a remote hydrogen plasma treatment are repeated to at least substantially fill the one or more features. Various time intervals between deposition and plasma treatment may be added to modulate gapfill performance.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: December 19, 2023
    Assignee: Lam Research Corporation
    Inventors: Guangbi Yuan, Ieva Narkeviciute, Bo Gong, Bhadri N. Varadarajan
  • Publication number: 20230273516
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 31, 2023
    Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
  • Publication number: 20230266662
    Abstract: Vacuum-integrated photoresist-less methods and apparatuses for forming metal hardmasks can provide sub-30 nm patterning resolution. A metal-containing (e.g., metal salt or organometallic compound) film that is sensitive to a patterning agent is deposited on a semiconductor substrate. The metal-containing film is then patterned directly (i.e., without the use of a photoresist) by exposure to the patterning agent in a vacuum ambient to form the metal mask. For example, the metal-containing film is photosensitive and the patterning is conducted using sub-30 nm wavelength optical lithography, such as EUV lithography.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 24, 2023
    Inventors: Jeffrey MARKS, George Andrew ANTONELLI, Richard A. GOTTSCHO, Dennis M. HAUSMANN, Adrien LAVOIE, Thomas Joseph KNISLEY, Sirish K. REDDY, Bhadri N. VARADARAJAN, Artur KOLICS
  • Patent number: 11732350
    Abstract: Provided are methods and systems for providing silicon-containing films. The composition of the silicon-containing film can be controlled by the choice of the combination of precursors and the ratio of flow rates between the precursors. The silicon-containing films can be deposited on a substrate by flowing two different organo-silicon precursors to mix together in a reaction chamber. The organo-silicon precursors react with one or more radicals in a substantially low energy state to form the silicon-containing film. The one or more radicals can be formed in a remote plasma source.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: August 22, 2023
    Assignee: Novellus Systems, Inc.
    Inventor: Bhadri N. Varadarajan
  • Publication number: 20230245924
    Abstract: Graphene is selectively deposited on a metal layer relative to a dielectric layer of a semiconductor substrate. Dielectric material is selectively deposited on the dielectric layer relative to the metal layer of the semiconductor substrate. The graphene is a high-quality graphene film that serves as an inhibitor during deposition of the dielectric material. In some implementations, the dielectric material may be a metal oxide. In some implementations, the dielectric material may be a low-k dielectric material. The graphene remains throughout semiconductor integration processes. In some implementations, the graphene may be subsequently modified by to permit deposition on the surface of the graphene or the graphene may be subsequently removed.
    Type: Application
    Filed: June 17, 2021
    Publication date: August 3, 2023
    Inventors: Ieva NARKEVICIUTE, Bhadri N. VARADARAJAN, Kashish SHARMA
  • Patent number: 11708634
    Abstract: Provided are methods and systems for providing silicon-containing films. The composition of the silicon-containing film can be controlled by the choice of the combination of precursors and the ratio of flow rates between the precursors. The silicon-containing films can be deposited on a substrate by flowing two different organo-silicon precursors to mix together in a reaction chamber. The organo-silicon precursors react with one or more radicals in a substantially low energy state to form the silicon-containing film. The one or more radicals can be formed in a remote plasma source.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: July 25, 2023
    Assignee: Novellus Systems, Inc.
    Inventor: Bhadri N. Varadarajan
  • Publication number: 20230203646
    Abstract: A doped or undoped silicon carbide film can be deposited using a remote plasma chemical vapor deposition (CVD) technique. One or more silicon-containing precursors are provided to a reaction chamber. Radical species, such as hydrogen radical species, are provided in a substantially low energy state or ground state and interact with the one or more silicon-containing precursors to deposit the silicon carbide film. A co-reactant may be flowed with the one or more silicon-containing precursors, where the co-reactant can be a depositing additive or a non-depositing additive to increase step coverage of the silicon carbide film.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Inventors: Matthew Scott WEIMER, Bhadri N. VARADARAJAN, Bo GONG, Zhe GUI
  • Patent number: 11680315
    Abstract: Provided are methods and systems for providing silicon-containing films. The composition of the silicon-containing film can be controlled by the choice of the combination of precursors and the ratio of flow rates between the precursors. The silicon-containing films can be deposited on a substrate by flowing two different organo-silicon precursors to mix together in a reaction chamber. The organo-silicon precursors react with one or more radicals in a substantially low energy state to form the silicon-containing film. The one or more radicals can be formed in a remote plasma source.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: June 20, 2023
    Assignee: Novellus Systems, Inc.
    Inventor: Bhadri N. Varadarajan
  • Patent number: 11680314
    Abstract: Provided are methods and systems for providing silicon-containing films. The composition of the silicon-containing film can be controlled by the choice of the combination of precursors and the ratio of flow rates between the precursors. The silicon-containing films can be deposited on a substrate by flowing two different organo-silicon precursors to mix together in a reaction chamber. The organo-silicon precursors react with one or more radicals in a substantially low energy state to form the silicon-containing film. The one or more radicals can be formed in a remote plasma source.
    Type: Grant
    Filed: March 25, 2022
    Date of Patent: June 20, 2023
    Assignee: Novellus Systems, Inc.
    Inventor: Bhadri N. Varadarajan
  • Publication number: 20230175134
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 8, 2023
    Inventors: Rachel E. BATZER, Huatan QIU, Bhadri N. VARADARAJAN, Patrick Girard BREILING, Bo GONG, Will SCHLOSSER, Zhe GUI, Taide TAN, Geoffrey HOHN
  • Publication number: 20220399230
    Abstract: Graphene is deposited on a metal surface of a semiconductor substrate at a deposition temperature compatible with back-end-of-line semiconductor processing. The graphene may be annealed at a temperature between the deposition temperature and a temperature sensitive limit of materials in the semiconductor substrate to improve film quality. Alternatively, the graphene may be treated by exposure to plasma with one or more oxidant species. The graphene may be encapsulated with an etch stop layer and hermetic barrier, where the etch stop layer includes a metal oxide deposited under conditions that do not change or that improve the film quality of the graphene. The graphene may be encapsulated with a hermetic barrier, where the hermetic barrier is deposited under conditions that do not damage the graphene.
    Type: Application
    Filed: February 18, 2021
    Publication date: December 15, 2022
    Inventors: Bhadri N. VARADARAJAN, Ieva NARKEVICIUTE, Kashish SHARMA
  • Publication number: 20220375722
    Abstract: Graphene is deposited on a metal surface of a substrate using a remote hydrogen plasma chemical vapor deposition technique. The graphene may be deposited at temperatures below 400 C, which is suitable for semiconductor processing applications. Hydrogen radicals are generated in a remote plasma source located upstream of a reaction chamber, and hydrocarbon precursors are flowed into the reaction chamber downstream from the remote plasma source. The hydrocarbon precursors are activated by the hydrogen radicals under conditions to deposit graphene on the metal surface of the substrate in the reaction chamber.
    Type: Application
    Filed: September 24, 2020
    Publication date: November 24, 2022
    Inventors: Bhadri N. VARADARAJAN, Ieva NARKEVICIUTE
  • Publication number: 20220238333
    Abstract: A doped or undoped silicon carbide (SiCxOyNz) film can be deposited in one or more features of a substrate for gapfill. After a first thickness of the doped or undoped silicon carbide film is deposited in the one or more features, the doped or undoped silicon carbide film is exposed to a remote hydrogen plasma under conditions that cause a size of an opening near a top surface of each of the one or more features to increase, where the conditions can be controlled by controlling treatment time, treatment frequency, treatment power, and/or remote plasma gas composition. Operations of depositing additional thicknesses of silicon carbide film and performing a remote hydrogen plasma treatment are repeated to at least substantially fill the one or more features. Various time intervals between deposition and plasma treatment may be added to modulate gapfill performance.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Guangbi YUAN, Ieva NARKEVICIUTE, Bo GONG, Bhadri N. VARADARAJAN
  • Publication number: 20220238334
    Abstract: A doped or undoped silicon carbide (SiCxOyNz) film can be deposited in one or more features of a substrate for gapfill. After a first thickness of the doped or undoped silicon carbide film is deposited in the one or more features, the doped or undoped silicon carbide film is exposed to a remote hydrogen plasma under conditions that cause a size of an opening near a top surface of each of the one or more features to increase, where the conditions can be controlled by controlling treatment time, treatment frequency, treatment power, and/or remote plasma gas composition. Operations of depositing additional thicknesses of silicon carbide film and performing a remote hydrogen plasma treatment are repeated to at least substantially fill the one or more features. Various time intervals between deposition and plasma treatment may be added to modulate gapfill performance.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Guangbi YUAN, Ieva NARKEVICIUTE, Bo GONG, Bhadri N. VARADARAJAN
  • Publication number: 20220220610
    Abstract: Provided are methods and systems for providing silicon-containing films. The composition of the silicon-containing film can be controlled by the choice of the combination of precursors and the ratio of flow rates between the precursors. The silicon-containing films can be deposited on a substrate by flowing two different organo-silicon precursors to mix together in a reaction chamber. The organo-silicon precursors react with one or more radicals in a substantially low energy state to form the silicon-containing film. The one or more radicals can be formed in a remote plasma source.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 14, 2022
    Inventor: Bhadri N. VARADARAJAN
  • Publication number: 20220220608
    Abstract: Provided are methods and systems for providing silicon-containing films. The composition of the silicon-containing film can be controlled by the choice of the combination of precursors and the ratio of flow rates between the precursors. The silicon-containing films can be deposited on a substrate by flowing two different organo-silicon precursors to mix together in a reaction chamber. The organo-silicon precursors react with one or more radicals in a substantially low energy state to form the silicon-containing film. The one or more radicals can be formed in a remote plasma source.
    Type: Application
    Filed: March 25, 2022
    Publication date: July 14, 2022
    Inventor: Bhadri N. VARADARAJAN