Patents by Inventor Bhanumathi Chelluri

Bhanumathi Chelluri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828578
    Abstract: A tactical obscurant device having an obscurant payload that comprises a plurality of powder particles radially pressed within a cavity of the obscurant device using a pulsed radial dynamic magnetic compaction process to provide a packing density of at least 40%, such that the obscurant payload has a greater packing density over traditional packing processes, which results in an increased obscurant cloud size upon detonation that is capable of screening in at least one range of the electromagnetic spectrum. The obscurant payload may be comprised of a single powder material, at least two layers of powder material, or may have a multi-layered packed structure using different types of powder materials that are packed concentrically for multispectral obscuration upon detonation.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 28, 2023
    Assignee: BAE Systems Land & Armaments L.P.
    Inventors: Edward A. Knoth, Bhanumathi Chelluri, Karl W. Baker
  • Publication number: 20220065591
    Abstract: A tactical obscurant device having an obscurant payload that comprises a plurality of powder particles radially pressed within a cavity of the obscurant device using a pulsed radial dynamic magnetic compaction process to provide a packing density of at least 40%, such that the obscurant payload has a greater packing density over traditional packing processes, which results in an increased obscurant cloud size upon detonation that is capable of screening in at least one range of the electromagnetic spectrum. The obscurant payload may be comprised of a single powder material, at least two layers of powder material, or may have a multi-layered packed structure using different types of powder materials that are packed concentrically for multispectral obscuration upon detonation.
    Type: Application
    Filed: August 26, 2020
    Publication date: March 3, 2022
    Inventors: Edward A. Knoth, Bhanumathi Chelluri, Karl W. Baker
  • Patent number: 10689745
    Abstract: A process of converting an outer layer of an object made of a refractory metal, such as titanium, into a carbide of the refractory metal. A molten metal, such as molten lithium, is placed adjacent the outer surface of the object. The lithium does not react with the titanium, nor is it soluble within the titanium to any significant extent at the temperatures involved. The molten lithium contains elemental carbon, that is, free carbon atoms. At high temperature, the carbon diffuses into the titanium, and reacts with titanium atoms to form titanium carbide in an outer layer. Significantly, no other atoms are present, such as hydrogen or oxygen, which can cause problems, because they are blocked by the molten lithium.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: June 23, 2020
    Assignee: IAP Research, Inc.
    Inventors: Julius John Bonini, Bhanumathi Chelluri, Edward Arlen Knoth
  • Publication number: 20170298495
    Abstract: A process of converting an outer layer of an object made of a refractory metal, such as titanium, into a carbide of the refractory metal. A molten metal, such as molten lithium, is placed adjacent the outer surface of the object. The lithium does not react with the titanium, nor is it soluble within the titanium to any significant extent at the temperatures involved. The molten lithium contains elemental carbon, that is, free carbon atoms. At high temperature, the carbon diffuses into the titanium, and reacts with titanium atoms to form titanium carbide in an outer layer. Significantly, no other atoms are present, such as hydrogen or oxygen, which can cause problems, because they are blocked by the molten lithium.
    Type: Application
    Filed: February 8, 2017
    Publication date: October 19, 2017
    Inventors: Julius John Bonini, Bhanumathi Chelluri, Edward Arlen Knoth
  • Patent number: 9580790
    Abstract: A process of converting an outer layer of an object made of a refractory metal, such as titanium, into a carbide of the refractory metal. A molten metal, such as molten lithium, is placed adjacent the outer surface of the object. The lithium does not react with the titanium, nor is it soluble within the titanium to any significant extent at the temperatures involved. The molten lithium contains elemental carbon, that is, free carbon atoms. At high temperature, the carbon diffuses into the titanium, and reacts with titanium atoms to form titanium carbide in an outer layer. Significantly, no other atoms are present, such as hydrogen or oxygen, which can cause problems, because they are blocked by the molten lithium.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 28, 2017
    Assignee: IAP Research, Inc.
    Inventors: Julius John Bonini, Bhanumathi Chelluri, Edward Arlen Knoth
  • Patent number: 8889065
    Abstract: An improved sintered material and product. A nanometer size reinforcement powder is mixed with a micron size titanium or titanium alloy powder. After the reinforcement powder is generally uniformly dispersed, the powder mixture is compacted and sintered, causing the nano reinforcement to react with the titanium or titanium alloy, producing a composite material containing nano and micron size precipitates that are uniformly distributed throughout the material.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: November 18, 2014
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney, III
  • Patent number: 7758784
    Abstract: A method of uniformly dispersing a nano powder throughout a micron powder. Ordinary mixing or agitation does not succeed in attaining uniform dispersal: the nano powder agglomerates into microscopic masses. In one form of the invention, a charge of a micron powder, with fifty weight percent of charge of nanopowder is loaded into a ball mill. The mixture is ball milled for less than two hours, at room temperature in a dry condition, and produces a highly uniform distribution of the nano powder throughout the micron powder.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: July 20, 2010
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James L. Maloney, III
  • Publication number: 20100124514
    Abstract: A method of uniformly dispersing a nano powder throughout a micron powder. Ordinary mixing or agitation does not succeed in attaining uniform dispersal: the nano powder agglomerates into microscopic masses. In one form of the invention, a charge of a micron powder, with fifty weight percent of charge of nanopowder is loaded into a ball mill. The mixture is ball milled for less than two hours, at room temperature in a dry condition, and produces a highly uniform distribution of the nano powder throughout the micron powder.
    Type: Application
    Filed: September 14, 2006
    Publication date: May 20, 2010
    Applicants: THE TIMKEN COMPANY, IAP RESEARCH, INC.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney, III
  • Publication number: 20080152944
    Abstract: A process of converting an outer layer of an object made of a refractory metal, such as titanium, into a carbide of the refractory metal. A molten metal, such as molten lithium, is placed adjacent the outer surface of the object. The lithium does not react with the titanium, nor is it soluble within the titanium to any significant extent at the temperatures involved. The molten lithium contains elemental carbon, that is, free carbon atoms. At high temperature, the carbon diffuses into the titanium, and reacts with titanium atoms to form titanium carbide in an outer layer. Significantly, no other atoms are present, such as hydrogen or oxygen, which can cause problems, because they are blocked by the molten lithium.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 26, 2008
    Applicant: IAP RESEARCH, INC.
    Inventors: Julius John Bonini, Bhanumathi Chelluri, Edward Arlen Knoth
  • Publication number: 20080069716
    Abstract: An improved sintered material and product. A nanometer size reinforcement powder is mixed with a micron size titanium or titanium alloy powder. After the reinforcement powder is generally uniformly dispersed, the powder mixture is compacted and sintered, causing the nano reinforcement to react with the titanium or titanium alloy, producing a composite material containing nano and micron size precipitates that are uniformly distributed throughout the material.
    Type: Application
    Filed: September 14, 2006
    Publication date: March 20, 2008
    Applicants: THE TIMKEN COMPANY, IAP RESEARCH, INC.
    Inventors: Bhanumathi Chelluri, Edward Arlen Knoth, Edward John Schumaker, Ryan D. Evans, James. L. Maloney
  • Patent number: 5689797
    Abstract: Structure and a method for producing very dense bodies from particulate materials. An electrically conductive drive member is positioned adjacent the particulate material. A significant magnitude of electrical current is caused to flow through the electrically conductive drive member. A magnetic field is established and large magnitudes of magnetic pressure are created, and pressure directly from or indirectly from the magnetic pressure is applied upon the particulate material, and the particulate material is compressed and compacted. In one embodiment of the invention electrical current creates a magnetic field which is applied to an electrically conductive pressure member which moves and applies compaction pressure upon the particulate material. Electromagnetic pressure in accordance with this invention may be applied to a compacted body of particulate material, and the compressibility and density of the body of particulate material is increased.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: November 18, 1997
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, John P. Barber, Duane Charles Newman
  • Patent number: 5611230
    Abstract: Structure and a method for producing very dense bodies of material from particulate materials. A particulate material is placed within an electrically conductive container. A solenoid or coil encompasses the electrically conductive container, and a large magnitude of electrical current is caused to flow through the solenoid or coil. As the electrical current flows through the solenoid or coil, large magnitudes of magnetic pressures are created upon the electrically conductive container, and the electrically conductive container is compressed, and the transverse dimension thereof is reduced. Thus, the particulate material within the electrically conductive container is very firmly compacted, and a rigid body of material is provided. Any one of numerous types of particulate material may be employed. For example, a body of electrical superconductive material of any desired size and shape can be produced by this method by the use of superconducting particulate material.
    Type: Grant
    Filed: January 3, 1995
    Date of Patent: March 18, 1997
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, John P. Barber
  • Patent number: 5611139
    Abstract: Structure and a method for producing very dense bodies from particulate materials. An electrically conductive drive member is positioned adjacent the particulate material. A significant magnitude of electrical current is caused to flow through the electrically conductive drive member. A magnetic field is established and large magnitudes of magnetic pressure are created, and pressure directly from or indirectly from the magnetic pressure is applied upon the particulate material, and the particulate material is compressed and compacted. In one embodiment of the invention electrical current creates a magnetic field which is applied to an electrically conductive pressure member which moves and applies compaction pressure upon the particulate material. Electromagnetic pressure in accordance with this invention may be applied to a compacted body of particulate material, and the compressibility and density of the body of particulate material is increased.
    Type: Grant
    Filed: April 6, 1995
    Date of Patent: March 18, 1997
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, John P. Barber, Duane C. Newman
  • Patent number: 5405574
    Abstract: Structure and a method for producing very dense bodies of material from powderous materials. A powderous material is placed within an electrically conductive container. A solenoid encompasses the electrically conductive container, and a large magnitude of electrical current is caused to flow through the solenoid or coil. As the electrical current flows through the solenoid or coil, large magnitudes of pressures are created upon the electrically conductive container, and the electrically conductive container is compressed, and the transverse dimension thereof is reduced. Thus, the powderous material within the electrically conductive container is very firmly compacted. A body of superconductive material of any desired size and shape can be produced by this method by the use of superconducting powderous material.
    Type: Grant
    Filed: February 10, 1992
    Date of Patent: April 11, 1995
    Assignee: IAP Research, Inc.
    Inventors: Bhanumathi Chelluri, John P. Barber