Patents by Inventor Bharath Babu Nunna

Bharath Babu Nunna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11480567
    Abstract: An apparatus and method to detect disease-specific antigens assists in disease diagnosis. Point-of-care (POC) micro biochip incorporates at least one hydrophilic microchannel for controlled and self-driven flow of body fluid. Metallic nano-interdigitated electrodes disposed within the channels give enhanced sensitivity detection. Microchannel controls flow and amplifies a capillary effect. Electrodes are fabricated on microchannel surface to detect biomolecular interactions. When a sample flows through microchannel, disease-specific antigens from the sample form antigen-antibody complex with antibodies immobilized on electrodes. Antigen-antibody interaction is detected via an electrical change in the biochip's nano circuit. Each electrode may include a different antibody to detect different antigens. Capacitance during antigen-antibody interaction without microfluidic flow is higher than with microfluidic flow due to immobilized antibodies instability on sensing surface caused by shear stress.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: October 25, 2022
    Assignee: New Jersey Institute of Technology
    Inventors: Eon Soo Lee, Bharath Babu Nunna
  • Patent number: 11020740
    Abstract: A microfluidic biochip for detecting disease antigens using gold nano interdigitated electrode circuit under a controlled self-driven flow condition is disclosed. The biochip incorporates hydrophilic microchannels for controlled self-driven flow and gold nano interdigitated electrodes for capacitive sensing with enhanced sensitivity. The biochip's microchannel has a surface treated with oxygen plasma to control microchannel surface hydrophilicity and flow rate of the biofluid sample. Carbon Nanotubes (CNTs) are utilized as an intermediate layer to enhance the binding capability to nano electrodes to enhance sensitivity. Due to the carboxylic groups of the CNTs, covalent bond binding between the antibodies and the CNTs allows the antibodies to adhere more readily on the surface of the electrodes. The quantity of antibodies attaching to the surface is increased due to the high surface to area ratio in CNTs.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 1, 2021
    Assignee: New Jersey Institute of Technology
    Inventors: Eon Soo Lee, Bharath Babu Nunna
  • Patent number: 10898894
    Abstract: Improved diagnostic assemblies are provided. More particularly, the present disclosure provides improved and highly advantageous chip based diagnostic assemblies configured to detect human diseases (e.g., cancer) and/or pathogens, and related methods of use. In exemplary embodiments, the present disclosure provides for consumable micro- or nano-fluidic chip based diagnostic assemblies having visual biosensors, with the diagnostic assemblies using continuous flow-based micro- or nano-fluidic channels and antibody-based immuno-complex designs. In certain embodiments, the diagnostic assembly includes a self-sustainable and operable chip (e.g., thumb-sized chip) that is configured to be deployed as a single use consumable with a direct all-or-none readout as an output to satisfy a point of screening method to screen a population.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: January 26, 2021
    Assignee: New Jersey Institute of Technology
    Inventors: Eon Soo Lee, Bharath Babu Nunna, K. Stephen Suh
  • Publication number: 20200182864
    Abstract: An apparatus and method to detect disease-specific antigens assists in disease diagnosis. Point-of-care (POC) micro biochip incorporates at least one hydrophilic microchannel for controlled and self-driven flow of body fluid. Metallic nano-interdigitated electrodes disposed within the channels give enhanced sensitivity detection. Microchannel controls flow and amplifies a capillary effect. Electrodes are fabricated on microchannel surface to detect biomolecular interactions. When a sample flows through microchannel, disease-specific antigens from the sample form antigen-antibody complex with antibodies immobilized on electrodes. Antigen-antibody interaction is detected via an electrical change in the biochip's nano circuit. Each electrode may include a different antibody to detect different antigens. Capacitance during antigen-antibody interaction without microfluidic flow is higher than with microfluidic flow due to immobilized antibodies instability on sensing surface caused by shear stress.
    Type: Application
    Filed: February 15, 2018
    Publication date: June 11, 2020
    Applicant: New Jersey Institute of Technology
    Inventors: Eon Soo Lee, Bharath Babu Nunna
  • Patent number: 10481154
    Abstract: Molecularly Imprinted Polymers (MIPs) are utilized to detect diseases and minimize false negative/positive scenarios. MIPs are implemented on a nano-electric circuit in a biochip where interactions of MIPs and an Antigen/Antibody (AG/AB) are detected, and disease specific biomarkers diagnosed. Biomarker detection is achieved with interdigitated gold electrodes in a biochip's microchannel. Capacitance changes due to biomarker interaction with AG/AB electrode coating diagnose diseases in a microfluidic environment. Biofluid passes through the microchannel and exposed to the nanocircuit to generate a capacitance difference and diagnose any specific disease in the biofluid sample. Blood capillary flow in a microchannel curved section experience centrifugal forces that separate liquid from solid. Various blood densities and segments experience different centrifugal effects while flowing through the curved section so serum is separated from various solid matter without using external devices.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: November 19, 2019
    Assignee: New Jersey Institute of Technology
    Inventors: Eon Soo Lee, Bharath Babu Nunna
  • Publication number: 20190201892
    Abstract: Improved diagnostic assemblies are provided. More particularly, the present disclosure provides improved and highly advantageous chip based diagnostic assemblies configured to detect human diseases (e.g., cancer) and/or pathogens, and related methods of use. In exemplary embodiments, the present disclosure provides for consumable micro- or nano-fluidic chip based diagnostic assemblies having visual biosensors, with the diagnostic assemblies using continuous flow-based micro- or nano-fluidic channels and antibody-based immuno-complex designs. In certain embodiments, the diagnostic assembly includes a self-sustainable and operable chip (e.g., thumb-sized chip) that is configured to be deployed as a single use consumable with a direct all-or-none readout as an output to satisfy a point of screening method to screen a population.
    Type: Application
    Filed: June 21, 2017
    Publication date: July 4, 2019
    Applicants: New Jersey Institute of Technology, Hackensack University Medical Center
    Inventors: Eon Soo Lee, Bharath Babu Nunna, K. Stephen Suh
  • Publication number: 20190118178
    Abstract: A microfluidic biochip for detecting disease antigens using gold nano interdigitated electrode circuit under a controlled self-driven flow condition is disclosed. The biochip incorporates hydrophilic microchannels for controlled self-driven flow and gold nano interdigitated electrodes for capacitive sensing with enhanced sensitivity. The biochip's microchannel has a surface treated with oxygen plasma to control microchannel surface hydrophilicity and flow rate of the biofluid sample. Carbon Nanotubes (CNTs) are utilized as an intermediate layer to enhance the binding capability to nano electrodes to enhance sensitivity. Due to the carboxylic groups of the CNTs, covalent bond binding between the antibodies and the CNTs allows the antibodies to adhere more readily on the surface of the electrodes. The quantity of antibodies attaching to the surface is increased due to the high surface to area ratio in CNTs.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Eon Soo Lee, Bharath Babu Nunna
  • Publication number: 20180128823
    Abstract: Molecularly Imprinted Polymers (MIPs) are utilized to detect diseases and minimize false negative/positive scenarios. MIPs are implemented on a nano-electric circuit in a biochip where interactions of MIPs and an Antigen/Antibody (AG/AB) are detected, and disease specific biomarkers diagnosed. Biomarker detection is achieved with interdigitated gold electrodes in a biochip's microchannel. Capacitance changes due to biomarker interaction with AG/AB electrode coating diagnose diseases in a microfluidic environment. Biofluid passes through the microchannel and exposed to the nanocircuit to generate a capacitance difference and diagnose any specific disease in the biofluid sample. Blood capillary flow in a microchannel curved section experience centrifugal forces that separate liquid from solid. Various blood densities and segments experience different centrifugal effects while flowing through the curved section so serum is separated from various solid matter without using external devices.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 10, 2018
    Inventors: Eon Soo Lee, Bharath Babu Nunna