Patents by Inventor Bharati S. Kulkarni

Bharati S. Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140008697
    Abstract: A composition includes an organopolysiloxane component (A) comprising at least one of a disiloxane, a trisiloxane, and a tetrasiloxane, and has an average of at least two alkenyl groups per molecule. The composition further includes an organohydrogensiloxane component (B) having an average of at least two silicon-bonded hydrogen atoms per molecule. Components (A) and (B) each independently have at least one of an alkyl group and an aryl group and each independently have a number average molecular weight less than or equal to 1500 (g/mole). The composition yet further includes a catalytic amount of a hydrosilylation catalyst component (C), and titanium dioxide (TiO2) nanoparticles (D). The composition has a molar ratio of alkyl groups to aryl groups ranging from 1:0.25 to 1:3.0. A product of the present invention is the reaction product of the composition, which may be used to make a light emitting diode.
    Type: Application
    Filed: December 6, 2011
    Publication date: January 9, 2014
    Inventors: Brian R. Harkness, Ann W. Norris, Shellene K. Thurston, Vishal Chhabra, Bharati S. Kulkarni, Nikhil R. Taskar
  • Patent number: 6534772
    Abstract: A microchannel phosphor screen for converting radiation, such as X-rays, into visible light. The screen includes a planar surface, which can be formed from glass, silicon or metal, which has etched therein a multiplicity of closely spaced microchannels having diameters of the order of 40 microns or less. Deposited within each of the microchannels is a multiplicity of phosphors which emit light when acted upon by radiation. The dimensions of the microchannel and the phosphors and the relationship between the microchannels and the phosphors is optimized so that the light output compares favorably with lower resolution non microchannel based scintillation screens. A photomultiplier can be integrated with the X-ray detector so as to provide an enhanced output for use with low level X-ray of for cine or fluoroscopy applications.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: March 18, 2003
    Assignee: Nanocrystal Imaging Corp.
    Inventors: Vishal Chhabra, Rameshwar Nath Bhargava, Dennis Gallagher, Samuel P. Herko, Bharati S. Kulkarni, Nikhil R. Taskar, Aleksey Yekimov
  • Patent number: 6036886
    Abstract: A process for the production of metal oxide nanocrystals activated with a rare earth element, which are useful as phosphors. The nanocrystal oxides are produced by a micellar microemulsion process. In the process an aqueous solutions of the host and activator is prepared and added to a mixture of oil and a micelle forming surfactant and cosurfactant to form a first water in oil microemulsion. An aqueous solution of a hydroxide containing compound is added to a second mixture of oil and a micelle forming surfactant and cosurfactant to form a second water in oil microemulsion. The two microemulsions are added together which cause the micelle units to coalesce and decoalesce and to form a nanocrystalline hydroxide compound of the host and activator. The solution is washed and treated so as to remove byproducts. Thereafter the hydroxide compound is converted to an nanocrystalline activated oxide.
    Type: Grant
    Filed: July 29, 1998
    Date of Patent: March 14, 2000
    Assignee: Nanocrystals Technology L.P.
    Inventors: Vishal Chhabra, Bharati S. Kulkarni, Rameshwar Nath Bhargava
  • Patent number: 5637258
    Abstract: A process for the production of metal oxide nanocrystalline phosphors activated with a rare earth, line emitting, element. The nanocrystal oxides are produced by a sol-gel like process. The process begins with an n-butoxide solution of the host and activator which is first subject to acetolysis which will cause the pH of the solution to change from basic to acidic. This is followed by the addition of water in a hydrolysis step which forms a host/activator hydroxide solution. To the host/activator hydroxide solution, sodium hydroxide, which is very basic, is added, which will cause the precipitation of host oxide nanocrystals activated with the activator. The host/activator n-butoxide precursors may be synthesized by azeotropic distillation.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: June 10, 1997
    Assignee: Nanocrystals Technology L.P.
    Inventors: Efim T. Goldburt, Rameshwar N. Bhargava, Bharati S. Kulkarni