Patents by Inventor Bhargav Citla

Bhargav Citla has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11114306
    Abstract: Embodiments of the present invention provide an apparatus and methods for depositing a dielectric material using RF bias pulses along with remote plasma source deposition for manufacturing semiconductor devices, particularly for filling openings with high aspect ratios in semiconductor applications. In one embodiment, a method of depositing a dielectric material includes providing a gas mixture into a processing chamber having a substrate disposed therein, forming a remote plasma in a remote plasma source and delivering the remote plasma to an interior processing region defined in the processing chamber, applying a RF bias power to the processing chamber in pulsed mode, and forming a dielectric material in an opening defined in a material layer disposed on the substrate in the presence of the gas mixture and the remote plasma.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: September 7, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhargav Citla, Jethro Tannos, Jingyi Li, Douglas A. Buchberger, Jr., Zhong Qiang Hua, Srinivas D. Nemani, Ellie Y. Yieh
  • Patent number: 10858727
    Abstract: A deposited amorphous carbon film includes at least 95% carbon. A percentage of sp3 carbon-carbon bonds present in the amorphous carbon film exceeds 30%, and a hydrogen content of the amorphous carbon film is less than 5%. A process of depositing amorphous carbon on a workpiece includes positioning the workpiece within a process chamber and positioning a magnetron assembly adjacent to the process chamber. The magnetron assembly projects a magnetic field into the process chamber. The method further includes providing a carbon target such that the magnetic field extends through the carbon target toward the workpiece. The method further includes providing a source gas to the process chamber, and providing pulses of DC power to a plasma formed from the source gas within the process chamber. The pulses of DC power are supplied in pulses of 40 microseconds or less, that repeat at a frequency of at least 4 kHz.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: December 8, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Jingjing Liu, Zhong Qiang Hua, Adolph Miller Allen, Michael W. Stowell, Srinivas D. Nemani, Chentsau Ying, Bhargav Citla, Viachslav Babayan, Andrej Halabica
  • Patent number: 10570506
    Abstract: Embodiments of the present disclosure generally describe methods for depositing an amorphous carbon layer onto a substrate, including over previously formed layers on the substrate, using a high power impulse magnetron sputtering (HiPIMS) process, and in particular, biasing of the substrate during the deposition process and flowing a nitrogen source gas and/or a hydrogen source gas into the processing chamber in addition to an inert gas to improve the morphology and film stress of the deposited amorphous carbon layer.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: February 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhargav Citla, Jingjing Liu, Zhong Qiang Hua, Chentsau Ying, Srinivas D. Nemani, Ellie Y. Yieh
  • Publication number: 20190127842
    Abstract: An apparatus and method of forming a dielectric film layer using a physical vapor deposition process include delivering a sputter gas to a substrate positioned in a processing region of a process chamber, the process chamber having a dielectric-containing sputter target, delivering an energy pulse to the sputter gas to create a sputtering plasma, the sputtering plasma being formed by energy pulses having an average voltage between about 800 volts and about 2000 volts and an average current between about 50 amps and about 300 amps at a frequency which is less than 50 kHz and greater than 5 kHz and directing the sputtering plasma toward the dielectric-containing sputter target to form an ionized species comprising dielectric material sputtered from the dielectric-containing sputter target, the ionized species forming a dielectric-containing film on the substrate.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Viachslav BABAYAN, Adolph Miller ALLEN, Bhargav CITLA, Ronald D. DEDORE, Vanessa FAUNE, Zhong Qiang HUA, Vaibhav SONI, Menglu WU
  • Publication number: 20190088457
    Abstract: Embodiments presented herein relate to a method of and apparatus for processing a substrate in a semiconductor processing system. The method begins by initializing a pulse synchronization controller coupled between a pulse RF bias generator and a HIPIMs generator. A first timing signal is sent by the pulse synchronization controller to the pulse RF bias generator and the HIPIMs generator. A sputtering target and an RF electrode disposed in a substrate support is energized based on the first timing signal. The target and the electrode is de-energized based on an end of the timing signal. A second timing signal is sent by the pulse synchronization controller to the pulse RF bias generator and the electrode is energized and de-energized without energizing the target in response to the second timing signal.
    Type: Application
    Filed: July 23, 2018
    Publication date: March 21, 2019
    Inventors: Viachslav BABAYAN, Zhong Qiang HUA, Menglu WU, Adolph Miller ALLEN, Bhargav CITLA
  • Publication number: 20180209037
    Abstract: Embodiments of the present disclosure generally describe methods for depositing an amorphous carbon layer onto a substrate, including over previously formed layers on the substrate, using a high power impulse magnetron sputtering (HiPIMS) process, and in particular, biasing of the substrate during the deposition process and flowing a nitrogen source gas and/or a hydrogen source gas into the processing chamber in addition to an inert gas to improve the morphology and film stress of the deposited amorphous carbon layer.
    Type: Application
    Filed: November 22, 2017
    Publication date: July 26, 2018
    Inventors: Bhargav CITLA, Jingjing LIU, Zhong Qiang HUA, Chentsau YING, Srinivas D. NEMANI, Ellie Y. YIEH
  • Publication number: 20180082861
    Abstract: Semiconductor systems and methods may include methods of performing selective etches that include modifying a material on a semiconductor substrate. The substrate may have at least two exposed materials on a surface of the semiconductor substrate. The methods may include forming a low-power plasma within a processing chamber housing the semiconductor substrate. The low-power plasma may be a radio-frequency (“RF”) plasma, which may be at least partially formed by an RF bias power operating between about 10 W and about 100 W in embodiments. The RF bias power may also be pulsed at a frequency below about 5,000 Hz. The methods may also include etching one of the at least two exposed materials on the surface of the semiconductor substrate at a higher etch rate than a second of the at least two exposed materials on the surface of the semiconductor substrate.
    Type: Application
    Filed: November 30, 2017
    Publication date: March 22, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Bhargav Citla, Chentsau Ying, Srinivas Nemani, Viachslav Babayan, Michael Stowell
  • Publication number: 20180051368
    Abstract: A deposited amorphous carbon film includes at least 95% carbon. A percentage of sp3 carbon-carbon bonds present in the amorphous carbon film exceeds 30%, and a hydrogen content of the amorphous carbon film is less than 5%. A process of depositing amorphous carbon on a workpiece includes positioning the workpiece within a process chamber and positioning a magnetron assembly adjacent to the process chamber. The magnetron assembly projects a magnetic field into the process chamber. The method further includes providing a carbon target such that the magnetic field extends through the carbon target toward the workpiece. The method further includes providing a source gas to the process chamber, and providing pulses of DC power to a plasma formed from the source gas within the process chamber. The pulses of DC power are supplied in pulses of 40 microseconds or less, that repeat at a frequency of at least 4 kHz.
    Type: Application
    Filed: May 19, 2017
    Publication date: February 22, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Jingjing Liu, Zhong Qiang Hua, Adolph Miller Allen, Michael W. Stowell, Srinivas D. Nemani, Chentsau Ying, Bhargav Citla, Viachslav Babayan, Andrej Halabica
  • Patent number: 9865484
    Abstract: Semiconductor systems and methods may include methods of performing selective etches that include modifying a material on a semiconductor substrate. The substrate may have at least two exposed materials on a surface of the semiconductor substrate. The methods may include forming a low-power plasma within a processing chamber housing the semiconductor substrate. The low-power plasma may be a radio-frequency (“RF”) plasma, which may be at least partially formed by an RF bias power operating between about 10 W and about 100 W in embodiments. The RF bias power may also be pulsed at a frequency below about 5,000 Hz. The methods may also include etching one of the at least two exposed materials on the surface of the semiconductor substrate at a higher etch rate than a second of the at least two exposed materials on the surface of the semiconductor substrate.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 9, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Bhargav Citla, Chentsau Ying, Srinivas Nemani, Viachslav Babayan, Michael Stowell
  • Publication number: 20180005850
    Abstract: Semiconductor systems and methods may include methods of performing selective etches that include modifying a material on a semiconductor substrate. The substrate may have at least two exposed materials on a surface of the semiconductor substrate. The methods may include forming a low-power plasma within a processing chamber housing the semiconductor substrate. The low-power plasma may be a radio-frequency (“RF”) plasma, which may be at least partially formed by an RF bias power operating between about 10 W and about 100 W in embodiments. The RF bias power may also be pulsed at a frequency below about 5,000 Hz. The methods may also include etching one of the at least two exposed materials on the surface of the semiconductor substrate at a higher etch rate than a second of the at least two exposed materials on the surface of the semiconductor substrate.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Bhargav Citla, Chentsau Ying, Srinivas Nemani, Viachslav Babayan, Michael Stowell
  • Patent number: 9640385
    Abstract: The present disclosure provides methods for removing gate electrode residuals from a gate structure after a gate electrode patterning process. In one example, a method for forming high aspect ratio features in a gate electrode layer in a gate structure includes performing an surface treatment process on gate electrode residuals remaining on a gate structure disposed on a substrate, selectively forming a treated residual in the gate structure on the substrate with some untreated regions nearby in the gate structure, and performing a remote plasma residual removal process to remove the treated residual from the substrate.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: May 2, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhargav Citla, Chentsau Ying, Srinivas D. Nemani
  • Publication number: 20160240385
    Abstract: The present disclosure provides methods for removing gate electrode residuals from a gate structure after a gate electrode patterning process. In one example, a method for forming high aspect ratio features in a gate electrode layer in a gate structure includes performing an surface treatment process on gate electrode residuals remaining on a gate structure disposed on a substrate, selectively forming a treated residual in the gate structure on the substrate with some untreated regions nearby in the gate structure, and performing a remote plasma residual removal process to remove the treated residual from the substrate.
    Type: Application
    Filed: January 19, 2016
    Publication date: August 18, 2016
    Inventors: Bhargav Citla, Chentsau Ying, Srinivas D. Nemani